[スポンサーリンク]

スポットライトリサーチ

フルオロシランを用いたカップリング反応~ケイ素材料のリサイクルに向けて~

[スポンサーリンク]

第282回のスポットライトリサーチは、大阪府立大学 大学院理学系研究科(松坂研究室)・山本大貴さんにお願いしました。

ケイ素-フッ素結合は自然界でもっとも強固な結合の一つであり、有機合成でもSi-F結合形成を駆動力とした変換法は多数開発されています。一方でこの結合を切断するにはどうすればいいか?と問われると、すぐには思い付きません。本研究ではパラジウム・ニッケル触媒の新たな特性を開拓し、この困難な結合変換を見事に成し遂げています。J. Am. Chem. Soc.誌 原著論文およびCover Pictureプレスリリースに公開されています。

“Fluorosilane Activation by Pd/Ni→Si–F→Lewis Acid Interaction: An Entry to Catalytic Sila-Negishi Coupling”
Kameo, H.; Yamamoto, H.; Ikeda, K.; Isasa, T.; Sakaki, S.; Matsuzaka, H.; García-Rodeja, Y.; Miqueu, K.; Bourissou, D. J. Am. Chem. Soc. 2020, 142, 14039–14044. doi:10.1021/jacs.0c04690

研究を現場で指揮された亀尾 肇 准教授から、山本さんについて以下のコメントを頂いています。昨今のコロナ禍でどのラボでもかなりの負担がかかったと思われますが、それでも歩みを止めない姿勢は今後とも人生の貴重な糧になることと思われます。それでは今回もインタビューをお楽しみください!

山本君はプロ野球好きで、その手の話になると話が止まらず、帰るのも忘れて話をし続けています。その情熱は研究にもよく発揮され、ケイ素‒フッ素結合の変換に関する難しい研究テーマに本当に粘り強く取り組んでくれました。特に、先輩らが苦労した化合物の単離を数多く達成できたのは、山本君の実験化学者としての高い能力を示すものでした。コロナ禍の大変な時期に論文を完成させる実験をきっちりとやり遂げた経験は、山本君が研究者として成長してゆく糧になると思います。これからも研究を始め様々な事に挑戦し、情熱を持って取り組んでくれることを期待しています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

私たちのグループの研究では σ電子受容性 (Z 型) 配位子として作用する反応基質が求核的に活性化されることに注目して、研究を行っています。今回、その求核的な活性化を鍵要素とすることで、強固なケイ素‒フッ素結合の切断を実現し、フルオロシランの触媒的な変換を世界に先駆けて達成しました

ケイ素‒フッ素結合はケイ素が形成する最も強固な結合です。さらに、フルオロシランと遷移金属との間には強い軌道相互作用が形成されにくいため、分子性触媒を用いてフルオロシランを変換することは困難でした。今回の研究は、Z 型配位子として作用しているフルオロシランに Lewis 酸を作用させることで、ケイ素‒フッ素結合が切断できることを先輩方が見出したことから始まりました。その知見に基づいて触媒反応への展開を図り、根岸カップリングの反応条件下で、様々な Lewis 酸の添加効果を検討する中で、Mg 塩の存在下で目的のアリール化が実現できることを見出しました。さらに、Pd→Si‒F 相互作用を有する反応中間体を単離して、Z 型シランから X 型シリル配位子への鍵となる変換が可逆的に進行することも明らかにしました。本研究のアプローチは、その他の強固な結合の変換にも適用できるものと期待されます。
ケイ素にはフッ素などの電気陰性な原子との間に強固な結合を形成する特性があります。そのため、ケイ素化合物は耐久性と耐熱性の高さが求められる半導体や医療素材などで使用されています。その一方で、強固なケイ素‒フッ素結合を変換する技術は乏しく、リサイクルすることはさらに困難とされてきました。最も強固なケイ素‒フッ素結合を変換する本研究の成果は、ケイ素化合物のリサイクル技術を実現するための知的基盤になると期待されます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

大阪大学の生越先生大橋先生のグループが、ヨウ化リチウムなどの Lewis 酸とパラジウム錯体との協同効果により、テトラフルオロエチレンの炭素‒フッ素結合の活性化を実現していました。そこから着想を得て、Z 型配位子として作用しているフルオロシランにヨウ化リチウムを作用させて、ケイ素‒フッ素結合の切断を達成しました。しかし、リチウム塩の存在下ではカップリング反応を検討しても触媒反応は効率的に進行しませんでした。そこで、様々な Lewis 酸を検討したところ、臭化マグネシウムなどのマグネシウム塩を用いると、1当量の添加でもフルオロシランのアリール化がほぼ定量的に進行しました。そのとき、Lewis 酸の絶大な効果に感動したことを覚えています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

ニッケル錯体を用いた実験はいずれも再現性を高めることに苦労しました。特に、ケイ素‒フッ素結合切断の反応生成物であるニッケルシリル錯体は空気や水分に対して不安定であり、細心の注意を払い何とか単離にまでこぎつけました。

Q4. 将来は化学とどう関わっていきたいですか?

素材開発の研究に携わりたいと考えています。研究生活を通じて本質を考える力を磨き、生活を豊かにする画期的な新素材の開発に携わりたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

Chem-Station は学部生の頃から楽しく拝読していましたが、まさか自分に寄稿の機会を頂けるとは考えておりませんでした。貴重な経験を頂き感謝申し上げます。
最後にこの場をお借りして日頃よりご指導くださった松坂先生、亀尾先生、竹本先生をはじめとする松坂研究室の皆さま、並びにこのコロナ禍においても変わらず心身ともに支えてくれた両親をはじめ家族に深く感謝致します。

研究者の略歴

名前:山本 大貴 (やまもと ひろき)
所属:大阪府立大学 大学院理学系研究科分子科学専攻 松坂研究室 修士1年
略歴:
2016年4月 大阪府立大学生命環境科学域自然科学類 入学
2020年3月 大阪府立大学生命環境科学域自然科学類 卒業
2020年4月 大阪府立大学大学院理学系研究科分子科学専攻 進学
研究テーマ:遷移金属錯体を用いたケイ素‒フッ素結合の触媒的変換反応

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「未来博士3分間コンペティション2020」の挑戦者を募集
  2. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ①
  3. 【予告】ケムステ新コンテンツ「元素の基本と仕組み」
  4. 低分子医薬に代わり抗体医薬がトップに?
  5. 創薬におけるモダリティの意味と具体例
  6. 究極の黒を炭素材料で作る
  7. うっかりドーピングの化学 -禁止薬物と該当医薬品-
  8. 論文をグレードアップさせるーMayer Scientific E…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Christoph A. Schalley
  2. 高純度フッ化水素酸のあれこれまとめ その1
  3. カティヴァ 酢酸合成プロセス Cativa Process for Acetic Acid Synthesis
  4. 偏光依存赤外分光でMOF薄膜の配向を明らかに! ~X線を使わない結晶配向解析
  5. ポリエチレンとポリプロピレン、7カ月ぶり値上げ浸透
  6. 【速報】2017年ノーベル化学賞は「クライオ電子顕微鏡の開発」に!
  7. 積水化学、高容量電池の火炎防ぐ樹脂繊維複合材を開発
  8. 人名反応から学ぶ有機合成戦略
  9. 世界初の気体可塑性エラストマー!!
  10. 転職を成功させる「人たらし」から学ぶ3つのポイント

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

注目情報

最新記事

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

GCにおける水素のキャリアガスとしての利用について

最近ヘリウムの深刻な供給不安により、GCで使うガスボンベの納期が未定となってしまい、ヘリウムが無くな…

タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内非膜型オルガネラの構築原理の解明へ-

第 390 回のスポットライトリサーチは、東京大学大学院 理学系研究科 助教の 山崎…

桝太一が聞く 科学の伝え方

概要サイエンスコミュニケーションとは何か?どんな解決すべき課題があるのか?桝…

レドックス反応場の論理的設計に向けて:酸化電位ギャップ(ΔEox)で基質の反応性を見積もる

第389回のスポットライトリサーチは、東京農工大学大学院生物システム応用科学府(生物有機化学研究室)…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP