[スポンサーリンク]

スポットライトリサーチ

カルコゲン結合でロジウム二核錯体の構造を制御する!

[スポンサーリンク]

第304回のスポットライトリサーチは、京都薬科大学大学院薬学研究科(古田研究室)・村井琢哉さんにお願いしました。

現代的触媒化学研究の先端潮流の一つに、これまで見過ごされてきた非古典的化学結合の活用が挙げられます。カルコゲン結合もその一つですが、上手く設計して触媒系に組み込むことはさほど行われていません。今回の成果では、不斉触媒の配位子構造制御を行う目的にカルコゲン結合を活用するという新しい考え方が提唱されています。本成果はACS Catalysls誌 原著論文およびプレスリリースに公開されています。

“Conformational Control in Dirhodium(II) Paddlewheel Catalysts Supported by Chalcogen-Bonding Interactions for Stereoselective Intramolecular C–H Insertion Reactions”
Murai, T.; Lu, W.; Kuribayashi, T.; Morisaki, K.; Ueda, Y.; Hamada, S.; Kobayashi, Y.; Sasamori, T.; Tokitoh, N.; Kawabata, T.; Furuta, T. ACS Catal. 2021, 11, 568–578. doi:10.1021/acscatal.0c03689

村井さんを指導されている古田 巧 教授から、村井さんについて以下の人物評を頂いています。古田教授は2018年より独立した研究室を主催されており、村井さんは立ち上げからの成果に大きな貢献を果たしてきました。今後ますますのご活躍が期待されます。それでは今回もインタビューをお楽しみください!

 村井君は、取り組んだ研究から必ずと言ってよいほど将来につながる新しい芽を発見してくれる学生です。これは彼の新物質創製に向けた情熱と研究に対する執着力の賜物だと思います。こちらからの提案にはしっかりと自分の意見を述べつつも、私の意思を尊重し、まずやってみる姿勢で臨んでくれるのも心地よく共同研究できる理由の一つです。また、フットワークの軽さも彼の持ち味の一つで、いつの間にか思ってもいなかった化合物を作っており、「えっ!そんなの合成してたの」と驚かされることもしばしばです。
触媒や合成中間体の結晶構造を楽しそうにいじくり回している村井君の姿をよく見かけますが、その様子を見ている私も研究テーマをより一層楽しいものと感じてきます。今回のロジウム二核錯体の研究でも彼の化学構造に対する洞察力が遺憾なく発揮され、カルコゲン結合で触媒構造を制御するコンセプトの立ち上げから、文字通り研究を牽引してくれました。
彼は博士後期課程の半ばで京大から京薬に籍を移す決断をしてくれ、二人三脚で研究を進めることができています。また、持ち前のコミュニケーション力の高さで後輩を熱心に指導し、研究室を引っ張ってくれており大変助かっています。異なる研究環境に身を置きラボリーダーとして研究を牽引した経験が彼の将来のキャリアに活きてくると信じています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

ロジウム二核カルボキシラート錯体は、通常不活性な C–H 結合の官能基化を可能にする極めて有用な触媒として知られています。この錯体では、2つのロジウム原子がいずれも触媒活性を示すため、特に不斉反応を行う上では、双方のロジウム原子周辺の立体環境が等しい対称分子を構築することが重要になります。しかしながら、立体構造内に含まれる自由回転可能な炭素-炭素結合により、その構造制御は困難です。
そこで、我々は硫黄-酸素原子間に働くカルコゲン結合に着目し、この相互作用によって結合の自由回転を抑制するコンセプトで触媒開発を行い、実際に縮環構造内に硫黄原子を含む触媒を合成しました。その結果、期待通りカルコゲン結合を介して結合の回転が抑制され、2つのロジウム原子周辺の立体環境が類似したD2対称構造を有することが明らかになりました。また、この触媒は分子内 C–H 挿入反応を高い立体選択性で触媒し、生理活性 -ラクトン類の短工程での不斉合成も達成しました。本研究成果は、触媒設計にカルコゲン結合を活用する新たなコンセプトを提示するものであると考えています。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

やはり、新しく合成した触媒の“立体構造の美しさ”というところにはとても思い入れがあります。従来のビナフチル型の触媒では、結合の自由回転によりロジウム中心の上下の立体環境が非等価でしたが、カルコゲン結合を介して綺麗なD2対称構造に配座制御された結晶構造が得られたときは、感動してその構造を1時間ぐらい眺めていたと思います。いずれの結晶構造も筑波大学数理物質系化学域 笹森貴裕 教授のご協力のもと明らかになったものなので、笹森先生には感謝しかありません。
また、その触媒を用いて分子内 C–H 挿入反応の立体選択性が劇的に改善されたことを古田先生(当時京都大学准教授)に伝え、感動を共有したときの、先生の驚いた様子はとても印象に残っていますね。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

新規触媒の合成に関しては、とても苦労しました。研究室配属当初からビナフチル型の触媒合成を行う中で経験を積んでいたので、ナフトチオフェン型の触媒に関してもすぐ合成を終えてしまおうと意気込んでいました。しかしながら、縮環構造内に硫黄原子を導入したことで、ビナフチル型の化合物とは反応性や安定性が大きく変わり(これもカルコゲン元素を含む化合物の興味深い点かもしれませんが)、全く反応が進行しないこともしばしばありました。その中で、それぞれのステップの問題点を洗い出し、試行錯誤したことで、触媒の創製に繋げることができました。現在では、実験のコツも掴み、合成法の改良もかなり進んでいますが、強引にでも触媒の合成に繋げた経験は今の研究生活に活きています。

Q4. 将来は化学とどう関わっていきたいですか?

卒業後は、製薬企業で研究職に就く予定です。これまでとは全く異なることを研究することになるとは思いますが、本研究を通して培ってきた考え方を前面に出し、創薬研究に貢献していきたいです。また、化学を通して築きあげてきた縁を大切に、これからも精進していきたいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

まず、日頃から活用しているChem-Stationに取り上げて頂き、大変嬉しく思います。
私は、修士課程の途中から博士後期課程にかけて本研究に取り組みました。その過程において紆余曲折も多々ありましたが、このような形で成果を発信できることを誇りに思いますし、読者の皆様にも面白さが伝われば良いなと思います。
私は略歴を見ての通り、博士後期課程在学中に所属を変更するという決断をしましたが、現在はより一層充実した研究生活を送れているように感じています。読者の皆様の中に、似たような境遇の方もいらっしゃるとは思いますが、自分の能力を最も発揮できる研究環境に身を置くことを優先してほしいと思います。
最後に、この場をお借りして、日頃から熱烈指導して頂いている古田教授、小林准教授、浜田助教をはじめとする研究室メンバーの皆様、昨年まで在籍していた京都大学化学研究所 川端研究室の皆様に深く感謝申し上げます。

研究者の略歴

名前:村井 琢哉
所属:京都薬科大学大学院薬学研究科 薬化学分野

研究テーマ
ロジウム二核錯体を用いた反応開発、カルコゲン元素を含む“美しい”化合物の創製

趣味
バレーボール、フルマラソン

略歴:
2017年3月 京都大学薬学部薬科学科 卒業(川端猛夫 教授)
2019年3月 京都大学薬学研究科薬科学専攻 修士課程 修了(川端猛夫 教授)
2019年3月 京都大学薬学研究科薬科学専攻 博士後期課程 入学(川端猛夫 教授)
2020年3月 同大学院 博士後期課程 中途退学
2020年4月 京都薬科大学大学院薬学研究科薬科学専攻 博士後期課程 編入学(古田巧 教授
2021年4月 日本学術振興会特別研究員 DC2

受賞歴
2019年 日本薬学会第139年会 学生優秀発表賞

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. シクロプロパンの数珠つなぎ
  2. ハッピー・ハロウィーン・リアクション
  3. Altmetric Score Top 100をふりかえる ~2…
  4. いつも研究室で何をしているの?【一問一答】
  5. 光照射によって結晶と液体を行き来する蓄熱分子
  6. 化学探偵Mr.キュリー8
  7. Lindau Nobel Laureate Meeting 動画…
  8. 分子構造を 3D で観察しよう (2)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 構造式を楽に描くコツ!? テクニック紹介
  2. 第30回「化学研究の成果とワクワク感を子供たちにも伝えたい」 玉尾皓平教授
  3. 科学:太古の海底に眠る特効薬
  4. 連鎖と逐次重合が同時に起こる?
  5. 谷野 圭持 Keiji Tanino
  6. 色素増感太陽電池の 実用化に向けたモジュール製造/セル作製技術【終了】
  7. ノーベル賞親子2代受賞、コーンバーグさんが東大で講演
  8. ウォーレン有機合成: 逆合成からのアプローチ
  9. 岩田忠久 Tadahisa Iwata
  10. ノーベル賞への近道?ー研究室におけるナレッジマネジメントー

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年4月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

注目情報

最新記事

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

GCにおける水素のキャリアガスとしての利用について

最近ヘリウムの深刻な供給不安により、GCで使うガスボンベの納期が未定となってしまい、ヘリウムが無くな…

タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内非膜型オルガネラの構築原理の解明へ-

第 390 回のスポットライトリサーチは、東京大学大学院 理学系研究科 助教の 山崎…

桝太一が聞く 科学の伝え方

概要サイエンスコミュニケーションとは何か?どんな解決すべき課題があるのか?桝…

レドックス反応場の論理的設計に向けて:酸化電位ギャップ(ΔEox)で基質の反応性を見積もる

第389回のスポットライトリサーチは、東京農工大学大学院生物システム応用科学府(生物有機化学研究室)…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP