[スポンサーリンク]

一般的な話題

タンパク質立体構造をPDBjViewerで表示しよう

 

知っている人は知っている。意外と簡単。タンパク質の立体構造データの取り扱いについて、初心者向けのレクチャーをしたいと思います。

表示機能を備えた可視化ソフトウェアビュワー)はゴマンとありますが、ダウンロードして立ち上げが簡単・軽くてサクサク動く・初心者向けのシンプルな機能・日本語のマニュアルもあるよ、ということで「PDBjViewer」を紹介したいと思います。

Greenがケムステで書かせていただいている記事には、しばしばタンパク質の立体構造を描いた図が登場します。今日はコレの書き方を紹介します。

ちなみに、作業環境はWindowsなので、Macintoshなど他の場合ではどうなのかは、あまり確認していません。ご了承ください。とはいえ、だいたい同じです。

 

  1. タンパク質の立体構造データを手に入れよう「Protein Data Bank」

Protein Data Bankと呼ばれるタンパク質立体構造の情報を取りまとめる機関は、米国「RCSB PDB」・欧州「PDBe」・日本「PDBj」の3つが拠点になっています。データは3機関で共有されているため、本質的にはどこも内容は同じです。タンパク質の結晶構造解析をした場合、これらのどこかに登録しないと、たいてい論文に載せられないので、実質的にすべての構造データがここにあります。ただ、検索窓など、使いやすさが少しずつ異なるので、自分の好みでどれかひとつを選ぶとよいでしょう。例えば、PDBjは部分的に日本語なので取っつきやすいかもしれません。わたしは、いつもRCSB PDBを使っているので、こちらで使い方を説明させていただきます。

まず「PDB」でグーグル検索しましょう。PDBjもRCSB PDBも上位にあるはずです。とりあえずRCSB PDBのホームページにアクセスしてみてください。

 

P1.PNG

そうすると、ホームページの上部に検索窓があるはずです。デフォルトでは「All categories」になっているはずなので、そのまま今回は試しに「FLOWERING LOCUS T」で検索してみてください。

 

P2.PNG



そうするとシロイヌナズナのフロリゲンの立体構造が引っかかるはずです。この論文は「A divergent external loop confers antagonistic activity on floral regulators FT and TFL1 (EMBO 2006)」に発表されているみたいですね。

構造データにはそれぞれPDB IDが割り振られており、この結晶構造解析の場合は1WKPです。先ほどは適当な語句を検索窓に打ち込みましたが、PDB IDを打ち込んでも、この構造データのページにいきつきます。PDB IDは結晶構造解析を報告したEMBO2006の論文にも記載されているはずです。

このページには、いろいろ情報が書いてありますが、とりあえず「Downloads Files」をクリックして、「PDB File (Text)」をダウンロードしてください。デスクトップなど分かりやすい場所に保存して、「1WKP.pdb」のファイルがあることを確認してください。

 

  1. タンパク質用のビュアーを用意しよう

立体構造のデータは拡張子「.pdb」が基本です。頑張れば低分子化合物用のビュアーでも見られる場合もありますが、動作が軽く編集もしやすいタンパク質用のビュアーがあった方が便利です。ダウンロードが簡単な「PDBjViewer」をここでは紹介します。「PDBjViewer」でグーグル検索すると上位に表示されるはずなので、そこからチェックしてみてください。

P3.PNG

「ダウンロード・インストール」の項目に「jnlpファイル[Java Web Start版(推奨)」とあるので、これを右クリックして、「対象をファイルに保存」しましょう。前後にいろいろと書いてありますが、たいていのパソコンにJavaは入っているはずなので、とくに気にしなくてもたいていは大丈夫です。

P4.PNG

デスクトップなど分かりやすい場所にダウンロードしたら、アイコンをクリックすると立ち上がります。「File」・「Open-Local」・「PDB」で先ほどの「1WKP.pdf」を開きましょう。マウス操作でタンパク質の位置を調整できます。最初はDisplayがWireframe、ColorsがCPKで表示されると思います。このままでは見づらいので、「Display」・「Ribbons」・「Colors」・「Chain」で表示を変えてみましょう。

P5.PNG

ここで、あれれっと思った方は、だいぶ生物化学に造詣のある方でしょう。フロリゲンが四量体タンパク質で機能しているわけがありませんね。

 

  1. PDBファイルを書き換えよう  

「分子が空間的に繰り返しパターンを持って配列した物質」を結晶と言います。生体内では単量体として機能する分子も、結晶では隣り合っていて当然です。ものによってはひとつだけエックス線回折を読み取ったデータもありますが、今回のように多くの場合そうとは限りません。

さらに、意地悪なことをしてみましょう。下の「jV>」にコマンドを打ってみましょう。「select hetero」と打ち込んでください。次にまた「Colors」・「CPK」・「Display」・「Spacefill」です。

P6.PNG

なんじゃ、この赤玉は!

 

結晶水として含まれていた水分子の酸素原子です。絵を作るには、水分子も、タンパク質の多量体も、不都合ですよね。ちなみに、水素原子がないじゃんと言いたくなるかもしれませんが、結晶構造解析の場合、水素原子は小さすぎて技術的に位置を決めることが困難なため、たいていは構造データに入っていません。

では、PDBファイルの編集に入りましょう。ビュワーはいったん閉じます。デスクトップなど分かりやすい場所に保存した「1WKP.pdf」を右クリックし、「プログラムから開く」・「Word Pad」を選択してください。そうすると、バーッとおびただしい情報が表示されるはずです。

P7.PNG

いくらかすると、「ATOM」から始まる行が登場すると思います。第1行目にはペプチド鎖Aのアルギニンの窒素原子の座標が示されています。

さらに下の行を見ると、ペプチド鎖Aからペプチド鎖Bに変わります。ペプチド鎖B・ペプチド鎖C・ペプチド鎖Dはいらないので削除してしまいましょう。始点を一度クリックし、そのあとSHIFTを押しながら終点をクリックすれば、大きな範囲でも選択でき、そのままキーボードのDeleteキーなりを押せばすぐに済むでしょう。

P8.PNG

次に「HETATOM」の項目です。酵素の基質や、受容体のリガンドの場合に限っては、いくらか残しておいた方がよいでしょう。ただ、生体内でフロリゲンに相互作用し何らかの機能を持つ低分子は知られていないので、今回はすべて消してしまって構いません。これで編集が完了です。「ファイル」から「上書き保存」してください。

 

  1. 画像を出力しよう

編集したPDBファイルをまたPDBjViewerで読み込みます。自分好みに表示をいじってください。マニュアルは日本語版があるのでそちらをご覧ください(http://www.pdbj.org/jv/manual/index_ja.html)。

 

コマンド例.

select backbone(主鎖を選択)

select protein(タンパク質を選択)

select ligand(リガンドを選択)

select *:a(ペプチド鎖Aを選択)

select 6:a(ペプチド鎖Aの6番を付されたアミノ酸を選択)

select 6-50:a(ペプチド鎖Aの6番から50番を付されたアミノ酸を選択)

select ARG(アルギニンを選択)

background white(背景を白に)

だいぶ慣れましたでしょうか。できあがりましたら「File」・「Save」・「PNG」か「File」・「Save」・「JPEG」で画像ファイルとして保存ください。

 

P9.PNG

 

以上、初心者向けのレクチャーでした。気が向いたら、PDBjViewer 以外のツールも紹介するかも知れません。ホモロジーモデリングによる立体構造予測、リガンド結合部位の予測、静電ポテンシャルマップの描き方などなど。分子動力学シミュレーションや、フラグメント分子軌道法もやりたいな……。

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. 論説フォーラム「グローバル社会をリードする化学者になろう!!」
  2. ~祭りの後に~ アゴラ企画:有機合成化学カードゲーム【遊機王】
  3. 植物生合成の謎を解明!?Heteroyohimbine の立体制…
  4. ワサビ辛み成分受容体を活性化する新規化合物
  5. 有機化学美術館が来てくれました
  6. メルマガ有機化学 (by 有機化学美術館) 刊行中!!
  7. アメリカで Ph. D. を取る –希望研究室にメールを送るの巻…
  8. −(マイナス)と協力して+(プラス)を強くする触媒

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. サムスン先端研恐るべし -大面積プリンタブルグラフェンの合成-
  2. ダン・シングルトン Daniel Singleton
  3. 「夢・化学-21」 夏休み子ども化学実験ショー
  4. 山元公寿 Kimihisa Yamamoto
  5. この窒素、まるでホウ素~ルイス酸性窒素化合物~
  6. ボールマン・ラーツ ピリジン合成 Bohlmann-Rahtz Pyridine Synthesis
  7. 1,4-ジ(2-チエニル)-1,4-ブタンジオン:1,4-Di(2-thienyl)-1,4-butanedione
  8. 市民公開講座 ~驚きのかがく~
  9. デス・マーチン酸化 Dess-Martin Oxidation
  10. バージェス試薬 Burgess Reagent

関連商品

注目情報

注目情報

最新記事

持続可能性社会を拓くバイオミメティクス

内容生物に学ぶ考え方は,ナイロンに見られるように古くからあった.近年,ナノテクノロジーの飛躍…

鉄カルベン活性種を用いるsp3 C-Hアルキル化

2017年、イリノイ大学 M. Christina Whiteらは鉄フタロシアニン触媒から生成するメ…

「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より

「ケムステ海外研究記」の第19回目は、向井健さんにお願いしました。向井さんはカリフォルニア大…

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

Chem-Station Twitter

PAGE TOP