[スポンサーリンク]

N

ネイティブ・ケミカル・リゲーション Native Chemical Ligation (NCL)

 

概要

既存のペプチド合成においては、分子量が大きくなるにつれて、官能基同士の望まぬ相互作用が指数関数的に増えるとともに、反応点がペプチド内部に潜り込んで遭遇しにくくなる。この結果、縮合の反応性が劇的に落ちる。たとえば液相は最大10残基程度、固相でも最大50残基程度がその適用限界とされている。

この壁を克服する方法論として有効なのが、Native Chemical Ligation(NCL)法である。

C末端にチオエステルを持つペプチドとN末端に無保護システインを持つペプチドを、生体適合条件下(pH 7、20℃~37℃)に混ぜるだけで反応が進行し、余分な活性化剤を必要としない。側鎖無保護のペプチドでも反応が収率良く進行する。ペプチドに生来備わっている官能基(Native Functional Group)を利用している点で価値が高い手法である。この方法によっておよそ200残基程度までのペプチド鎖を化学合成することが可能になった。

必然的に結合部はシステイン残基にならざるを得ないが、硫黄原子を還元的に除去して別の残基にする方法なども開発されている。

基本文献

  • Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266, 776. DOI:10.1126/science.7973629
  • Johnson, E. C. B.; Kent, S. B. H. J. Am. Chem. Soc. 2006, 128, 6640. DOI: 10.1021/ja058344i

<Review of NCL>

  •  Dawson, P. E.; Kent, S. B. H. Annu. Rev. Biochem. 2000, 69, 923.
  • Clark, R. J.; Craik, D. J. Pept. Sci. 2009, 94, 414. DOI: 10.1002/bip.21372
  • McGrath, N. A.; Raines, R. T. Acc. Chem. Res. 2011, 44, 752. DOI: 10.1021/ar200081s
  • Raibaut, L.; Olivier, N.; Melnyk, O. Chem. Soc. Rev. 2012, 41, 7001. DOI: 10.1039/C2CS35147A 
  • Wong, C. T. T.; Tung, C. L.; Li, X. Mol. Biosys. 2013, 9, 826. DOI: 10.1039/C2MB25437A

<General Review of Chemical Synthesis of Peptides/Proteins

  • Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243. DOI: 10.1021/cr950005s
  • Bray, B. L. Nat. Rev. Drug Discov. 2003, 2, 587. doi:10.1038/nrd1133
  • Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 91. DOI: 10.1146/annurev.biophys.34.040204.144700
  • Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338. DOI: 10.1039/b700141j
  • Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471. doi:10.1038/nature1070
  •  Stolzew, S. C.; Kaiser, M. Synthesis 2012, 44, 1755. DOI: 10.1055/s-0031-1289765

 

反応機構

S-to-Nアシル転移を鍵過程として進行する。最初のチオエステル交換過程は可逆である。例えば内部システインのように、チオール官能基が結合形成部位以外に存在しても、反応には影響を及ぼさない。見方を変えれば適切なチオールを触媒にすることで反応を加速させることも可能。

NCL_1.gif

反応例

ラネーニッケルによる脱硫により、Cys残基を選択的にAla残基に変換する事が可能。[1]

4-メルカプトフェニル酢酸(MPAA)や、2-メルカプトエタンスルホナート(MESNa)が良好な触媒として機能する。

Kentらによって、HIV-1プロテアーゼCovalent DiverがNCL法を使って合成された[2]。これは化学的手法によって合成された史上最大のペプチドである(2009年現在)。

NCL_3.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

[1] Yan, L.Z.; Dawson, P.E. J. Am. Chem. Soc. 2001, 123, 526. DOI: 10.1021/ja003265m
[2] Torbeev, V. Y.; Kent, S. B. H. Angew. Chem. Int. Ed. 2007, 46, 1667. DOI: 10.1002/anie.200604087

 

関連反応

 

関連書籍

 

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 原子移動ラジカル重合 Atom Transfer Radical…
  2. ダキン・ウェスト反応 Dakin-West Reaction
  3. ストーク エナミン Stork Enamine
  4. ブレデレック ピリミジン合成 Bredereck Pyrimid…
  5. ジスルフィド架橋型タンパク質修飾法 Disulfide-Brid…
  6. ターボグリニャール試薬 Turbo Grignard Reage…
  7. 光延反応 Mitsunobu Reaction
  8. コーンブルム ニトロ化反応 Kornblum Nitoratio…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. クリスチャン・ハートウィッグ Christian Hertweck
  2. 有機反応を俯瞰する ーエノラートの発生と反応
  3. 世界初!反転層型ダイヤMOSFETの動作実証に成功
  4. 第24回 化学の楽しさを伝える教育者 – Darren Hamilton教授
  5. カゴ型シルセスキオキサン「ヤヌスキューブ」の合成と構造決定
  6. 新規糖尿病治療薬「DPPIV阻害剤」‐熾烈な開発競争
  7. トラネキサム酸 / tranexamic acid
  8. リガンド指向性化学を用いたGABAA受容体の新規創薬探索法の開発
  9. 安定な環状ケトンのC–C結合を組み替える
  10. トリニトロトルエン / Trinitrotoluene (TNT)

関連商品

注目情報

注目情報

最新記事

ジアゾニウム塩が開始剤と捕捉剤を“兼務”する

アリールジアゾニウム塩を用いたプレニルカルバマート/ウレアのシクロアミノジアゾ化反応が開発された。入…

パラジウム光触媒が促進するHAT過程:アルコールの脱水素反応への展開

2016年、イリノイ大学シカゴ校・Vladimir Gevorgyanらは、Pd(0)触媒の共存下、…

ウラジミール・ゲヴォルギャン Vladimir Gevorgyan

ウラジミール・ゲヴォルギャン(Vladimir Gevorgyan、1956年8月12日-)は、アメ…

有機合成化学協会誌2018年11月号:オープンアクセス・英文号!

有機合成化学協会が発行する有機合成化学協会誌、2018年11月号がオンライン公開されました。今月…

観客が分泌する化学物質を測定することで映画のレーティングが可能になるかもしれない

映画には、年齢による鑑賞制限が設けられているものがあります。その制限は映画の内容に応じて各国の審査団…

庄野酸化 Shono Oxidation

概要アルコール溶媒中にアミドまたはカルバメートを電解酸化し、N,O-アセタールを得る反応。アミン…

PAGE TOP