[スポンサーリンク]

化学者のつぶやき

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:③その他の材料

[スポンサーリンク]

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を取り上げます。前回記事②からの続きです。

“Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging”
Ding F., Zhan, Y., Lu, X., Sun, Y. Chem. Sci. 2018, 9, 4370-4380. doi:10.1039/C8SC01153B

【概要】 癌などの病変部や生体組織の構造を生きた動物体内や組織切片で蛍光イメージングする目的に、組織透過性の高い近赤外光が用いられてきた。これまでは主に 700-900 nm の第一近赤外光(NIR-I) を用いた蛍光イメージングが行われてきたが、光散乱や自家蛍光の存在のため、光情報が得られる組織深部までの距離が短いこと、分解能が低いこと、バックグラウンドが高いことなどが問題であった。 この問題を解決する手法として、光散乱や自家蛍光の影響がより少ない第二近赤外光(NIR-II, 1000-1700 nm) を用いたイメージング法に注目が集まっている。どのような蛍光体(色素)が用いられているか、その利点や現在の問題、今後の展開について概観する。

4. 共役高分子

D-A 型色素の共重合体(pDA)では、ポリマー長を長くするとバンドギャップが小さくなり、発光波長を長くできる。図5 に示したpDA は、水溶性と生体適合性を向上させるべくPEG 化した界面活性剤をシェルとして、ナノ粒子型色素 pDA-PEG として用いられている。その発光波長は1050 nm 近くにあり、量子収率は 1.7%である。 pDA-PEG を用いて、血流のイメージングがなされている (図6) 。

図5 . pDA-PEG の構造と吸収・蛍光スペクトル

図6. 後肢の血流イメージング(マーカー=5mm)

5. 量子ドット(QDs)

PbS、 CdS、 Ag2S などの QDs は、サイズの調整が容易で、サイズとバンドギャップに相関関係があるため、発光波長の制御も可能である。また、発光量子収率が他の蛍光体より 高く(>10%)、光褪色にも強いため、イメージングに有益な点が多い。

図 7. 量子ドットのサイズと波長の関係(こちらより引用)

最近では、 PbS をコアにして、その周りをCdS で被覆したコア-シェル型 Pbs@Cds QDs のコアサイズを制御することにより、 1000 nm から1500 nm に至るまで発光波長を制御できることが示されている。一方、 Pb などの毒性は生体適合性の観点から問題となっており、コーティングによって解決を図る取り組みもあるが、そのコーティングによって量子収率が低下するなど、新たな問題が生じている。

QDs の応用例では、生体適合性を高めるため Ag2S を PEG 化したものを用い、血管構造をイメージングしている(図 8) 。また、間葉系幹細胞の動態のトラッキングにも応用されている。

図8. PEG-Ag2S QDs による血管イメージング

6.希土類含有ナノ粒子(RENPs, Rare-earth-doped nanoparticle)

希土類含有ナノ粒子は、 NIR 光で励起した場合、通常の NIR 蛍光を示すとともに、アップコンバージョンが起こり可視光の蛍光を発することが知られている。 励起効率の低さと蛍光波長が可視領域であることを理由に、 in vivo イメージングでは NIR 蛍光が主に用いられる。

Er・Ce ドープNaYbF4をコア、 NaYbF4 をシェルとするナノ粒子 Er-RENPs は、Ce のドープでアップコンバージョン蛍光(~660 nm) が減少し、 NIR-II 蛍光(~1550 nm)が増加することが分かった(図 9) 。 更に生体適合性を向上させるため、アルキル鎖(PMH, poly(maleicanhydride-alt-1-octadecene))に PEG を繋いだ PMH-PEG で修飾した Er-RENPs@PMH-PEG が開発されており、脳血流のイメージングがなされている。 露光時間は 20 msec と短く、他の蛍光体より時間分解能が高い。

図9. a, b) Ce3+をドープした Er-RENPs の構造(a)と TEM 像(b)。 c) Ce3+ドープの発光への影響。 d) 生体適合性を高める PEG 修飾。h, i) 脳血流の経時測定

7. 結語

有機・無機を問わず様々な NIR-II の蛍光体がこれまで開発されてきた。NIR-II イメージングに関する一連の研究により、組織深部においても高い時空間分解能で、自家蛍光の少ない高コントラストな画像が得られることが示されてきた。これまではマウスを用いた基礎研究に焦点が置かれてきたが、ヒト臨床試験への展開を考えると、波長、量子収率、生体適合性、合成・精製などの観点で更なる蛍光体の改良が必要である。 また臨床試験においては、 NIR-II イメージングと他の MRI や PET などのイメージング技術との連携が益々重要となる。ケミカルバイオロジー研究の観点からは、生体分子間相互作用を生きた動物で可視化すべく、標的分子を特異的に化学修飾する技術が必須となる。

蛍光体の開発と化学修飾法の開発は、動物イメージングにおいて今後とも益々ニーズが高まるだろう。

【前回記事はこちら:

(図5~9は冒頭論文(Chem. Sci. 2018, 9, 4370)より、 CC BY-NC 3.0 licenseの規定に従い引用)
【本シリーズ記事は、糖化学ノックイン領域において実施している領域内総説抄録会の過去資料をブログ記事に転記し、一般向けに公開しているものです】

関連リンク

 

Avatar photo

糖化学ノックイン

投稿者の記事一覧

2021年度科学研究費助成事業 学術変革領域研究(B)「糖化学ノックイン」の広報アカウントです。生体分子現象の一つ「糖タンパク質の膜動態」にフォーカスし、生命系を理解し制御するための新たな反応化学技術「ケミカルノックイン」の確立を目指しています。
領域ホームページ:https://glycan-chemical-knockin.com/

関連記事

  1. 薬学部6年制の現状と未来
  2. 第七回ケムステVプレミアレクチャー「触媒との『掛け算』で研究者を…
  3. 米国へ講演旅行へ行ってきました:Part III
  4. アンモニアを窒素へ変換する触媒
  5. 生合成を模倣した有機合成
  6. 金属イオン認識と配位子交換の順序を切替えるホスト分子
  7. 有機化学者のラブコメ&ミステリー!?:「ラブ・ケミスト…
  8. 高選択的な不斉触媒系を機械学習で予測する

注目情報

ピックアップ記事

  1. 知の市場:無料公開講座参加者募集のご案内
  2. ノーベル化学賞メダルと科学者の仕事
  3. 新しい太陽電池ーペロブスカイト太陽電池とは
  4. 「進化分子工学によってウイルス起源を再現する」ETH Zurichより
  5. 製薬業界の研究開発費、増加へ
  6. エステルをアルデヒドに変換する新手法
  7. 超多剤耐性結核の新しい治療法が 米国政府の承認を取得
  8. 第五回ケムステVシンポジウム「最先端ケムバイオ」を開催します!
  9. ケミカルタイムズ 紹介記事シリーズ
  10. 第129回―「環境汚染有機物質の運命を追跡する」Scott Mabury教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP