[スポンサーリンク]

化学者のつぶやき

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:③その他の材料

[スポンサーリンク]

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を取り上げます。前回記事②からの続きです。

“Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging”
Ding F., Zhan, Y., Lu, X., Sun, Y. Chem. Sci. 2018, 9, 4370-4380. doi:10.1039/C8SC01153B

【概要】 癌などの病変部や生体組織の構造を生きた動物体内や組織切片で蛍光イメージングする目的に、組織透過性の高い近赤外光が用いられてきた。これまでは主に 700-900 nm の第一近赤外光(NIR-I) を用いた蛍光イメージングが行われてきたが、光散乱や自家蛍光の存在のため、光情報が得られる組織深部までの距離が短いこと、分解能が低いこと、バックグラウンドが高いことなどが問題であった。 この問題を解決する手法として、光散乱や自家蛍光の影響がより少ない第二近赤外光(NIR-II, 1000-1700 nm) を用いたイメージング法に注目が集まっている。どのような蛍光体(色素)が用いられているか、その利点や現在の問題、今後の展開について概観する。

4. 共役高分子

D-A 型色素の共重合体(pDA)では、ポリマー長を長くするとバンドギャップが小さくなり、発光波長を長くできる。図5 に示したpDA は、水溶性と生体適合性を向上させるべくPEG 化した界面活性剤をシェルとして、ナノ粒子型色素 pDA-PEG として用いられている。その発光波長は1050 nm 近くにあり、量子収率は 1.7%である。 pDA-PEG を用いて、血流のイメージングがなされている (図6) 。

図5 . pDA-PEG の構造と吸収・蛍光スペクトル

図6. 後肢の血流イメージング(マーカー=5mm)

5. 量子ドット(QDs)

PbS、 CdS、 Ag2S などの QDs は、サイズの調整が容易で、サイズとバンドギャップに相関関係があるため、発光波長の制御も可能である。また、発光量子収率が他の蛍光体より 高く(>10%)、光褪色にも強いため、イメージングに有益な点が多い。

図 7. 量子ドットのサイズと波長の関係(こちらより引用)

最近では、 PbS をコアにして、その周りをCdS で被覆したコア-シェル型 Pbs@Cds QDs のコアサイズを制御することにより、 1000 nm から1500 nm に至るまで発光波長を制御できることが示されている。一方、 Pb などの毒性は生体適合性の観点から問題となっており、コーティングによって解決を図る取り組みもあるが、そのコーティングによって量子収率が低下するなど、新たな問題が生じている。

QDs の応用例では、生体適合性を高めるため Ag2S を PEG 化したものを用い、血管構造をイメージングしている(図 8) 。また、間葉系幹細胞の動態のトラッキングにも応用されている。

図8. PEG-Ag2S QDs による血管イメージング

6.希土類含有ナノ粒子(RENPs, Rare-earth-doped nanoparticle)

希土類含有ナノ粒子は、 NIR 光で励起した場合、通常の NIR 蛍光を示すとともに、アップコンバージョンが起こり可視光の蛍光を発することが知られている。 励起効率の低さと蛍光波長が可視領域であることを理由に、 in vivo イメージングでは NIR 蛍光が主に用いられる。

Er・Ce ドープNaYbF4をコア、 NaYbF4 をシェルとするナノ粒子 Er-RENPs は、Ce のドープでアップコンバージョン蛍光(~660 nm) が減少し、 NIR-II 蛍光(~1550 nm)が増加することが分かった(図 9) 。 更に生体適合性を向上させるため、アルキル鎖(PMH, poly(maleicanhydride-alt-1-octadecene))に PEG を繋いだ PMH-PEG で修飾した Er-RENPs@PMH-PEG が開発されており、脳血流のイメージングがなされている。 露光時間は 20 msec と短く、他の蛍光体より時間分解能が高い。

図9. a, b) Ce3+をドープした Er-RENPs の構造(a)と TEM 像(b)。 c) Ce3+ドープの発光への影響。 d) 生体適合性を高める PEG 修飾。h, i) 脳血流の経時測定

7. 結語

有機・無機を問わず様々な NIR-II の蛍光体がこれまで開発されてきた。NIR-II イメージングに関する一連の研究により、組織深部においても高い時空間分解能で、自家蛍光の少ない高コントラストな画像が得られることが示されてきた。これまではマウスを用いた基礎研究に焦点が置かれてきたが、ヒト臨床試験への展開を考えると、波長、量子収率、生体適合性、合成・精製などの観点で更なる蛍光体の改良が必要である。 また臨床試験においては、 NIR-II イメージングと他の MRI や PET などのイメージング技術との連携が益々重要となる。ケミカルバイオロジー研究の観点からは、生体分子間相互作用を生きた動物で可視化すべく、標的分子を特異的に化学修飾する技術が必須となる。

蛍光体の開発と化学修飾法の開発は、動物イメージングにおいて今後とも益々ニーズが高まるだろう。

【前回記事はこちら:

(図5~9は冒頭論文(Chem. Sci. 2018, 9, 4370)より、 CC BY-NC 3.0 licenseの規定に従い引用)
【本シリーズ記事は、糖化学ノックイン領域において実施している領域内総説抄録会の過去資料をブログ記事に転記し、一般向けに公開しているものです】

関連リンク

 

糖化学ノックイン

投稿者の記事一覧

2021年度科学研究費助成事業 学術変革領域研究(B)「糖化学ノックイン」の広報アカウントです。生体分子現象の一つ「糖タンパク質の膜動態」にフォーカスし、生命系を理解し制御するための新たな反応化学技術「ケミカルノックイン」の確立を目指しています。
領域ホームページ:https://glycan-chemical-knockin.com/

関連記事

  1. Dead Endを回避せよ!「全合成・極限からの一手」④(解答編…
  2. アセトンを用いた芳香環のC–Hトリフルオロメチル化反応
  3. パラジウム光触媒が促進するHAT過程:アルコールの脱水素反応への…
  4. スタニルリチウム調製の新手法
  5. 【速報】2015年ノーベル化学賞は「DNA修復機構の解明」に!
  6. 第六回ケムステVシンポ「高機能性金属錯体が拓く触媒科学」
  7. マテリアルズ・インフォマティクスにおける初期データ戦略 -新規テ…
  8. 論文引用ランキングから見る、化学界の世界的潮流

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 赤外光で分子の結合を切る!
  2. インフルエンザ治療薬「CS‐8958」、09年度中にも国内申請へ
  3. 米デュポン、高機能化学部門を分離へ
  4. 有機合成化学協会誌2019年1月号:大環状芳香族分子・多環性芳香族ポリケチド天然物・りん光性デンドリマー・キャビタンド・金属カルベノイド・水素化ジイソブチルアルミニウム
  5. スティーヴンス転位 Stevens Rearrangement
  6. アミドをエステルに変化させる触媒
  7. 実践・化学英語リスニング(3)生化学編: 世界トップの化学者と競うために
  8. バナジル(アセチルアセトナト) Vanadyl(IV) acetylacetonate
  9. エドマン分解 Edman Degradation
  10. ご長寿化学者の記録を調べてみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP