[スポンサーリンク]

化学者のつぶやき

金属アルコキシドに新たなファミリー!Naでも切れない絆

[スポンサーリンク]

アルカリ金属と1-アダマンタノール (HOAd1)の混合により、平面三角形構造かつ未還元のヒドロキシ基を有する錯体の合成が報告された。錯体は複数のロンドン分散相互作用により安定化されているため、錯体中に残存するヒドロキシ基はアルカリ金属による還元を受けない。

アルカリ金属–アルコキシドの新たな錯体構造

有機合成化学において金属–アルコキシドは、安価で入手容易な原料から簡便に調製できる強塩基やアルコキシド化剤として、広く利用される (図1A)。中でも、アルカリ金属–アルコキシドは非常に単純な組成式(MOR)であるにも関わらず、アルカリ金属とアルコールの組み合わせによって多種多様な構造をもつ錯体を構築する[1]。1961年のリチウムメトキシド (LiOMe)錯体の報告[2]を皮切りに様々な構造のアルカリ金属–アルコキシド錯体が報告されている。典型的な構造として、2つの六員環が積み重なった六員環積層構造と立方体構造がある (図1B)。六員環積層構造をとる錯体としてLiOMeとナトリウムメトキシド (NaOMe)、カリウムイソプロポキシド (KOiPr)が挙げられる[2–4]。また、立方体構造をとる錯体としては、カリウムメトキシド (KOMe)とセシウムメトキシド (CsOMe)、嵩高いアルキル鎖を有するカリウムtert-ブトキシド (KOtBu)が知られる[5–7]。非典型的な構造をとる錯体としてナトリウムtert-ブトキシド (NaOtBu)がある[8]。この錯体は典型的な六員環積層構造の他に九量体かご型構造を形成する。
今回VaskoとPowerらは、アルコキシド化剤としてアルカリ金属–1–アダマントキシド (OAd1)錯体の合成を試みた。過剰な金属NaとHOAd1を混合し得られた錯体は、典型的な六員環積層型構造もしくは立方体構造ではなく、Na原子と3つの酸素原子が同一平面上にある三角形構造を構築した1であった (図1C)。加えて、系中に過剰量の金属Naが存在しているにも関わらず、1のヒドロキシ基は還元を受けていない。計算化学から、弱い相互作用であるロンドン分散相互作用による構造安定化が金属Naによるヒドロキシ基の還元よりも優位となることが示された。

図1. (A) 金属–アルコキシド (B) アルカリ金属–アルコキシドの錯体構造 (C) アルカリ金属–アルコキシドの新たな構造

 

“Inhibition of Alkali Metal Reduction of 1-Adamantanol by London Dispersion Effects”
Mears, K. L.; Stennett, C. R.; Fettinger, J. C.; Vasko, P.; Power, P. P.
Angew. Chem., Int. Ed.2022, 61, e202201318.
DOI: 10.1002/anie.202201318

論文著者の紹介

研究者:Petra Vasko
研究者の経歴:
2011–2015 Ph. D., University of Jyväskylä, Finland (Prof. H. M. Tuononen)
2016–2021 Postdoc, University of Jyväskylä, Finland (Prof. H. M. Tuononen)
2017–2020 Postdoc, University of Oxford, UK (Prof. S. Aldridge)
2021– Academy of Finland Research Fellow, University of Helsinki, Finland
研究内容:13,14族錯体と遷移金属錯体の合成と性質および反応への応用

研究者:Philip P. Power
研究者の経歴:
1974–1977 Ph. D., University of Sussex, UK (Prof. M. F. Lappert)
1978–1980 Postdoc, Stanford University, USA (Prof. L. H. Holm)
1981–1985 Assistant Professor, University of California, Davis, USA
1985–1988 Associate Professor, University of California, Davis, USA
1988–2005 Professor of Department of Chemistry, University of California, Davis, USA
2005– Distinguished Professor, University of California, Davis, USA
研究内容:Al、Ga、GeまたはSnなどの元素間の形式的二重または三重結合多重結合をもつ錯体、Cr元素間に形式的五重結合をもつ錯体の合成、これら新規錯体の性質解明およびH2、NH3、CO、エチレンなどの活性化

論文の概要

錯体1は過剰量の金属NaとHOAd1のTHF溶液を還流することで合成された (図2A)。X線構造解析から、1のNa原子と3つの酸素原子ほぼ同一平面上に位置しており(結合角の合計 = 359.58°)、3つすべてのアダマンチル基はこの平面の片側に位置すると示された。エネルギー分割法(Energy decomposition analysis)により錯体1の分子内相互作用を解析した結果、ロンドン分散相互作用(Edisp)による安定化が、全相互作用エネルギー(Etotal)のおよそ3割を占める。詳しく見てみると、ロンドン分散相互作用はアダマンチル基の水素原子同士および錯体中に残存している2つのヒドロキシ基の水素原子同士に加え、それら2種類の水素原子間に存在している。水素原子間に働くロンドン分散力は一般的に1 kcal mol–1以下であり、分子構造を規定できる力とは見なされにくい。しかし、錯体1の分子内にはロンドン分散相互作用が複数存在しているため、合計12.7 kcal mol–1で安定化に寄与している。この安定化によって錯体中の残存ヒドロキシ基がアルカリ金属による還元を受けないと推定された。また、金属Naの代わりに金属Liおよび金属Kを用いた際に生成する錯体も、1と同様の平面三角形構造となることがNMR解析によって確認されている。
一方、過剰量の金属Naと2-アダマンタノール (HOAd2)のTHF溶液を還流した場合、すべてのHOAd2が還元され、典型的な立方体構造の錯体2が得られた (図2B)。この結果から錯体1の形成は、複数のロンドン分散相互作用が構築可能な1-アダマンチル基の特異な構造が鍵であると考えられる。

図2. (A) 1の分子構造および分子内相互作用 (B) 金属NaとHOAd2からなる2の合成および錯体構造

 

以上、アルカリ金属とHOAd1による残存ヒドロキシ基をもつ平面三角形構造の錯体が報告された。アルカリ金属存在下であるにも関わらず、錯体中のヒドロキシ基が還元されない理由は、分子内に存在する複数のロンドン分散相互作用による錯体の安定化であった。今後もこのように特異な構造を有する金属アルコキシド錯体が発見され、金属アルコシキドのファミリーがさらに拡張されるかもしれない。

 参考文献

  1. (a) Klett, J. Structural Motifs of Alkali Metal Superbases in Non-coordinating Solvents. CHem. Eur. J. 2021, 27, 888−904. DOI: 10.1002/chem.202002812(b) Weiss, E. Structures of Organo Alkali Metal Complexes and Related Compounds. Angew. Chem., Int. Ed., 1993, 32, 1501–1523. DOI: 10.1002/anie.199315013
  2. Dunken, H. Krauße, J. Strukturuntersuchungen von Lithiummethylat. Z. Chem. 1961, 1, 27–28. DOI: 10.1002/zfch.19610010111
  3. Weiss, E. Die Kristallstruktur des Natriummethylats. Z.  Anorg. Allg. Chem. 1964, 332, 197–203. DOI: 10.1002/zaac.19643320311
  4. Greiser, T.; Weiss, E. Kristallstrukturen der Alkali-Isopropoxide des Kaliums, Rubidiums und Caesiums. Chem. Ber. 1979, 112, 844–848. DOI: 10.1002/cber.19791120309
  5. Weiss, E. Die Kristallstruktur des Kaliummethylats. Chim. Acta. 1963, 46, 2051–2054. DOI: 10.1002/hlca.19630460624
  6. Weiss, E.; Alsdorf, H. Die Kristallstrukturen des Kalium-, Rubidium- und Cäsiummethylats. Z. Anorg. Allg. Chem. 1970, 372, 206–213. DOI: 10.1002/zaac.19703720212
  7. Weiss, E.; Alsdorf, H.; Kühr, H. Structure of Alkali Metal t-Butoxides. Angew. Chem., Int. Ed. 1967, 6, 801–802. DOI: 10.1002/anie.196708011
  8. Greiser, T.; Weiss, E. Kristallstruktur des Natrium‐tert‐Butoxids, [(CH3)3CONa]9[(CH3)3CONa]6, Ein Neuer Strukturtyp Mit Nonameren und Hexameren Assoziaten. Chem.Beri. 1977, 110, 3388–3396. DOI: 10.1002/cber.19771101018

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 科学を理解しようとしない人に科学を語ることに意味はあるのか?
  2. 光触媒の活性化機構の解明研究
  3. カゴ型シルセスキオキサン「ヤヌスキューブ」の合成と構造決定
  4. フッフッフッフッフッ(F5)、これからはCF3からSF5にスルフ…
  5. 化学研究で役に立つデータ解析入門:エクセルでも立派な解析ができる…
  6. ホウ素でがんをやっつける!
  7. 実験の再現性でお困りではありませんか?
  8. 新規性喪失の例外規定とは?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第15回ケムステVシンポジウム「複合アニオン」を開催します!
  2. 学術変革領域(B)「糖化学ノックイン」発足!
  3. 一家に1枚周期表を 理科離れ防止狙い文科省
  4. 女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!
  5. 傷んだ髪にタウリン…東工大などの研究で修復作用判明
  6. 有機合成化学協会誌2021年11月号:英文特集号 Special Issue in English
  7. マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域での展開と効果〜(2)
  8. 期待度⭘!サンドイッチ化合物の新顔「シクロセン」
  9. バートリ インドール合成 Bartoli Indole Synthesis
  10. サンケイ化学、フェロモン剤を自社生産

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

ニキビ治療薬の成分が発がん性物質に変化?検査会社が注意喚起

2024年3月7日、ブルームバーグ・ニュース及び Yahoo! ニュースに以下の…

ガラスのように透明で曲げられるエアロゲル ―高性能透明断熱材として期待―

第603回のスポットライトリサーチは、ティエムファクトリ株式会社の上岡 良太(うえおか りょうた)さ…

有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒素芳香族化合物・ジベンゾクリセン・ロタキサン・近赤外光材料

有機合成化学協会が発行する有機合成化学協会誌、2024年3月号がオンライン公開されています。…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part3

日本化学会年会の付設展示会に出展する企業とのコラボです。第一弾・第二弾につづいて…

ペロブスカイト太陽電池の学理と技術: カーボンニュートラルを担う国産グリーンテクノロジー (CSJカレントレビュー: 48)

(さらに…)…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2

前回の第一弾に続いて第二弾。日本化学会年会の付設展示会に出展する企業との…

CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」

日本化学会第104春季年会(2024)で開催されるシンポジウムの一つに、CIPセッション「世界に躍進…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1

今年も始まりました日本化学会春季年会。対面で復活して2年めですね。今年は…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/03/21 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

分子のねじれの強さを調節して分子運動を制御する

第602回のスポットライトリサーチは、東京大学大学院理学系研究科 塩谷研究室の中島 朋紀(なかじま …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP