[スポンサーリンク]

化学者のつぶやき

アレ?アレノン使えばノンラセミ化?!

[スポンサーリンク]

ラセミ化しないペプチド合成への新しいアプローチが誕生した。アレノンを縮合剤として用いると、対応するジペプチドを高収率で与える。本手法は液相および固相ポリペプチド合成にも応用できる。

ペプチド縮合剤の開発

1901年にFischerらがジペプチドを合成して以来、創薬や材料化学を中心としたファインケミカル分野におけるペプチドの需要性が高まり、その合成研究は飛躍的な発展を遂げてきた。最も一般的なペプチド合成法は、縮合剤を用いた活性エステル中間体を経由するa-アミノ酸同士のペプチド結合形成であり、これまでに様々な縮合剤が開発されてきた。

初めて汎用された縮合剤は、Sheehanらによって開発されたジシクロヘキシルカルボジイミドである(Figure 1A) [1]。その後StevensとMunkらは、ケテンイミンを縮合剤とするペプチド結合形成反応を報告した(Figure 1B) [2]。しかし、これらの手法は、オキサゾロン形成(Path A)あるいは、カルボニルα位の分子内脱プロトン化(Path B)により進行する生成物のラセミ化が問題であった[3]。後者については、縮合剤由来の塩基中心が作用して起こる。ラセミ化を抑制するため、オキサゾロンが形成され難い中間体を経由するHOBtやHOAt、Oxymaなどが開発され、信頼性の高い補助縮合剤として利用されている。

一方、最近江西師範大学のZhaoらはイナミドがラセミ化を伴わないペプチド合成に有用な縮合剤であることを報告した(Figure 1C)[4]。窒素原子上の電子求引基であるトシル基がイナミドの塩基性を抑え、ラセミ化を回避する。しかしイナミドの反応性が低く、固相ペプチド合成には適用できない。
Zhaoらは、活性エステル生成には求電子的なsp炭素が必要であること、活性エステルの塩基性を抑えることがラセミ化防止の鍵であることに着目した。その結果、今回sp炭素をもつアレノンを用いると塩基性部位を含まないa-カルボニルビニルエステル中間体を経由して、ラセミ化することなく種々のペプチドが得られることを見いだした(Figure 1D)。

Figure 1. (A) Sheehanらの反応 (B) Stevensらの反応 (C) Zhaoらの反応 (D) 今回の反応

 

“Allenone-Mediated Racemization/Epimerization-Free Peptide Bond Formation and Its Application in Peptide Synthesis”
Wang, Z.; Wang, X.; Wang, P.; Zhao, J. J. Am. Chem. Soc. 2021, 143, 10374–10381.
DOI: 10.1021/jacs.1c04614

論文著者の紹介


研究者: Junfeng Zhao, 赵军锋 (Symform, 2019, PDF)
研究者の経歴:
1998–2001 B.S., Beijing Normal University
2002–2005 M.S., Central China Normal University (Prof. Mingwu Ding)
2005–2006 Ph. D. candidate, Chengdu Institute of Organic Chemistry (Prof. Liuzhu Gong)
2006–2010 Ph. D. Nanyang Technological University (Prof. Teckpeng Loh)
2010–2011 Postdoc, Nanyang Technological University (Prof. Chuanfa Liu)
2011–2013 Postdoc, University of Bonn (Prof. Michael Famulok) and University of Münster (Prof. Armido Studer)
2013–2014 Assistant Professor, University of Hong Kong (Prof. Dan Yang)
2014– Professor, Jiangxi Normal University

論文の概要

研究内容: 生物活性を有するペプチドやタンパク質、多環式化合物の合成および修飾法の開発
本反応は、a-カルボニルビニルエステル中間体合成とアミド縮合の2段階で進行する(Figure 2A)。著者らは、ジクロロエタン中、カルボン酸1とアレノン2を反応させると、1,4-付加と異性化のカスケード反応により良好な収率でα-カルボニルビニルエステル中間体3が得られることを見いだした。基質適用範囲は広く、脂肪族(1a)、芳香族(1b)、a,b-不飽和カルボン酸(1c and 1d)を用いたいずれの場合も良好な収率で対応する3a3dを与えた(Figure 2B)。続いてDMF中、3と種々のアミン4が反応することで対応するアミド5が得られた。このとき、嵩高いアミン(4a)や求核性の劣る芳香族アミン(4d)の反応では、触媒量のHOBtを加えることでそれぞれ5a5dが高収率で得られた。3の反応性が極めて高いことから、ワンポット反応でもアミドの収率はほとんど低下しない。
次に著者らは、本手法がペプチド合成にも適用できるかを検証した。その結果、種々の天然/非天然アミノ酸から対応するジペプチドがラセミ化することなく高収率で得られた(Figure 2C)。嵩高いN-メチルアミノ酸(5e)や、無保護のヒドロキシ基を有するトレオニンやセリン(5f and 5g)、無保護のアミノ基を有するトリプトファン(5h)をもつジペプチドも合成できる。さらに本手法は液相および固相のポリペプチド合成にも適用可能であることから、極めて実用性に富んだ反応といえる。

Figure2. (A) 反応経路 (B) アミド結合形成 (C) ペプチド結合形成

 

以上、アレノンを用いたペプチド結合形成反応が開発された。本手法は、ペプチド合成において最も厄介なラセミ化/エピメリ化を回避できる。今後、ペプチド医薬開発への貢献が期待される。

 参考文献

  1. Sheehan, J. C.; Hess, G. P. A New Method of Forming Peptide Bonds. J. Am. Chem. Soc. 1955, 77, 1067−1068. DOI: 10.1021/ja01609a099
  2. Stevens, C. L.; Munk, M. E. Nitrogen Analogs of Ketenes. V.1 Formation of the Peptide Bond. J. Am. Chem. Soc. 1958, 80, 4069−4071. DOI:10.1021/ja01548a060
  3. El-Faham, A.; Albericio, F. Peptide Coupling Reagents, More than a Letter Soup. Chem. Rev. 2011, 111, 6557−6602. DOI: 10.1021/cr100048w
  4. Hu, L.; Xu, S.; Zhao, Z.; Yang, Y.; Peng, Z.; Yang, M.; Wang,; Zhao, J. Ynamides as Racemization-Free Coupling Reagents for Amide and Peptide Synthesis. J. Am. Chem. Soc. 2016, 138, 13135−13138. DOI: 10.1021/jacs.6b07230
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 3Mとはどんな会社?
  2. 2009年人気記事ランキング
  3. 周期表の形はこれでいいのか? –その 2: s ブロックの位置 …
  4. とある化学者の海外研究生活:アメリカ就職編
  5. 【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキ…
  6. TED.comで世界最高の英語プレゼンを学ぶ
  7. 医薬品への新しい合成ルートの開拓 〜協働的な触媒作用を活用〜
  8. トーンカーブをいじって画像加工を見破ろう

注目情報

ピックアップ記事

  1. 2011年イグノーベル賞決定!「わさび警報装置」
  2. 実験の再現性でお困りではありませんか?
  3. MOFを用いることでポリアセンの合成に成功!
  4. リピンスキーの「ルール・オブ・ファイブ」 Lipinski’s “Rule of Five”
  5. ムギネ酸は土から根に鉄分を運ぶ渡し舟
  6. なぜ電子が非局在化すると安定化するの?【化学者だって数学するっつーの!: 井戸型ポテンシャルと曲率】
  7. English for Presentations at International Conferences
  8. 東京化成工業より 春の学会年会に参加予定だったケムステ読者の皆様へ
  9. ケムステバーチャルプレミアレクチャーの放送開始決定!
  10. 私がケムステスタッフになったワケ(2)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP