[スポンサーリンク]

スポットライトリサーチ

量子コンピューターによるヒュッケル分子軌道計算

[スポンサーリンク]

ついに400回を迎えました。第400回のスポットライトリサーチは、東京大学大学院理学系研究科(山内研究室)修士1年の吉田 龍平 さんにお願いしました。

皆さんは、どこかで量子コンピューターという言葉をお聞きしたことがあるでしょうか。
量子コンピューターによる計算が現実のものとなりつつありますが、量子演算において現時点では避けられないエラーの発生を抑えることが量子技術開発において重要と言われています。今回ご紹介するのは、上記のエラーに対する問題を解決する手法を開発し、最も基本的な分子の電子状態の計算手法であるヒュッケル分子軌道による分子軌道の計算を量子コンピューターで行ったという成果です。

汎用性が高い手法を開発した本成果は、The Journal of Chemical Physics 誌 原著論文とプレスリリースに公開されています。また科学新聞にも掲載されています。

Quantum Computing of Hückel Molecular Orbitals of π-Electron Systems

Yoshida, R.; Lötstedt, E.; Yamanouchi, K. The Journal of Chemical Physics, 2022, 156, 184117. doi:10.1063/5.0086489

研究室を主宰されている山内 薫 教授から、吉田さんについて以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

昨年の春、私のグループでは、Hückel MO 法による計算を量子回路によって行うことを検討していました。卒研生として私のグループに入ったばかりの吉田龍平君に、このテーマを与えることになったのですが、それからの彼の頑張りと研究の進捗には目を見張るものがありました。卒研を始める前から量子計算に関心を持っていた吉田君は、Qiskit にも精通していて、自らの工夫で Hückel MO計算のための量子回路を構築しプログラムを完成させると、量子コンピューターの実機であるibm_kawasakiを使って、次々とジョブを走らせました。

吉田君は、「量子計算の過程で生成してしまう物理的に意味を持たない状態を排除する」という最も単純な誤り補正を行うことによって、いくつものπ電子系分子について、古典計算で得られる分子軌道のエネルギーに近い値が量子計算によって得られることを示してくれました。我々は、その成果をまとめた論文を本年1月末に学術雑誌に投稿することができました。卒研生が卒業研究を通じて得た成果を、卒業研究の期間内に学術雑誌に投稿することは、普通はなかなか出来ないことです。「量子リテラシーを持つ若手人材を育成しなければならない」という話を近頃良く耳にしますが、吉田君はそのようなレベルを遥かに超えて、量子計算のパイオニアの一人として際立った成果を挙げています。私は吉田龍平君のこれからの更なる研究展開に大いに期待しているところです。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

量子力学によって記述されている分子の性質を量子コンピュータでシュミレーションすることは量子コンピューターの構想段階からの主要の目標の一つです。また量子コンピューターでは現在の古典コンピュータでのシュミレーションより大きな分子についてより正確にシュミレーションできることが期待されています。

この研究では実際にヒュッケル法を用いることでヒュッケル分子軌道のエネルギーを実際の量子コンピュータで計算しました。

このエネルギー計算において量子コンピュータで計算できるようにするためにハミルトニアンの一部を扱いやすいパウリ行列に変え、エネルギーを計算する上で以下のように小さなパーツに分割しました。それぞれのパーツの値を量子コンピューターで計算しそこから古典計算機で仕上げとして足し合わせることで計算しました。

また分子軌道を表現する際には他の分子や他の軌道も表現しやすくするように基底関数とそれに作用して分子軌道を作る励起関数を用いました。励起関数についてはパラメータを埋め込むことで異なる分子軌道についても同じ回路で計算できるように工夫しました。

この回路を用いてハミルトニアンのパーツの期待値を計算しそれぞれを組み合わせてそれぞれの分子のエネルギーを計算しました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究では量子コンピュータを用いてなるべくシンプルで拡張性の高い形で化学計算をしてみたいという考えのもとヒュッケル法を用いて分子軌道のエネルギーを計算しました。また、回路自体も小さな部分ごとに分割することでそれぞれのパーツはとても小さく、組み合わせることで他の分子や他の励起状態の分子軌道についても簡単に用意できるようになっているのでとても拡張性が高くなっています。研究の最中にエラーを減らすために[1]を用いてパーツごとの演算の回数を減らす改良をしたのですがその際にもこの思想によりとても簡単に改良が進みました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

現在実用化されている量子コンピューターはNISQ(Noisy Intermediate Scale Quantum) デバイスと呼ばれるように残念ながら発展途上であり、ノイズが小さくなく理想的な結果を得られるとは限りません。この計算についても実際の量子コンピューターで計算したところ、予想通りではありますがエラーによりエネルギーの値はあまり良くありませんでした。このような量子コンピュータの実機の良いとは言えない結果からいかにエラーの影響を減らしてより良い結果を引き出すかということが難しかったです。これを克服するためにこの回路では観測できるはずのない状態が存在することを利用して、観測した後に明らかにおかしい計算結果を消して、その後に正規化しました。それにより結果をかなり改善することができました。

Q4. 将来は化学とどう関わっていきたいですか?

中学生の時に自分が想像つかないように色などの物質の性質が変わりうるということを化学を通じて学び経験しました。それによって化学が好きになり大学院の修士課程まで来ました。修士課程を通じてさらに化学に触れ合い微力ながらも発展に貢献できたらと思っています。また修士課程の後も現在学んでいる物理化学をはじめとする化学の知識を生かして社会に恩返しができればと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

当記事をお読みいただきありがとうございます。

昨今ニュースでも量子コンピューターは取り上げられておりブームと言っても過言では無いでしょう。その中でも化学への応用というのは量子コンピュータの構想段階からある主要な使い道の一つです。そのため多くの研究者が化学分野への応用となる研究をしています。現在は古典コンピュターに対する優位性を実証することは難しいですが今後半導体をはじめとする科学技術の発展により量子コンピューターによって化学計算が大きく変わると考えられており、自分も信じています。そのためぜひその日まで量子コンピューターに興味を持ちつづけていただければと思います。

最後に熱心なご指導ととても研究のしやすい環境を作ってくださった山内教授、Lötstedt准教授、研究室のスタッフと学生の皆様と共同研究先のDIC Corporationの皆様にこの場をお借りして心より感謝申し上げたいと思います。

また、このような大変素晴らしい機会を与えてくださったChem-Stationのスタッフの方々に感謝申し上げます。

関連リンク

  1. Vatan and C. Williams, Optimal quantum circuits for general two-qubit gates,”Phys.Rev. A 69, 032315 (2004). Doi: 10.1103/PhysRevA.69.032315

研究者の略歴

名前:吉田 龍平 (よしだ りゅうへい)
所属:東京大学大学院理学系研究科化学専攻 修士一年
研究テーマ:量子化学計算の量子コンピューターへの応用
略歴:
2022年3月 東京大学理学部化学科卒業
2022年4月 〜 現在 東京大学理学系研究科化学専攻 博士前期課程

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. メーカーで反応性が違う?パラジウムカーボンの反応活性
  2. 博士課程と給料
  3. 現代の錬金術?―ウンコからグラフェンをつくった話―
  4. リチウムイオンに係る消火剤電解液のはなし
  5. 【8/31まで!!】マテリアルズ・インフォマティクスの基礎から実…
  6. ヤモリの足のはなし ~吸盤ではない~
  7. 有機合成化学協会誌2018年12月号:シアリダーゼ・Brook転…
  8. ハロゲン原子の受け渡しを加速!!新規ホウ素触媒による触媒的ハロゲ…

注目情報

ピックアップ記事

  1. 企業の研究を通して感じたこと
  2. なぜ青色LEDがノーベル賞なのか?ー雑記編
  3. ビス(ヘキサフルオロアセチルアセトナト)銅(II)水和物 : Bis(hexafluoroacetylacetonato)copper(II) Hydrate
  4. ノーベル賞親子2代受賞、コーンバーグさんが東大で講演
  5. 投手が使用するすべり止め剤の効果を初めて定量的に実証
  6. 2007年ノーベル医学・生理学賞発表
  7. アルカロイドの大量生産
  8. カンプス キノリン合成 Camps Quinoline Synthesis
  9. ナノスケールの虹が世界を変える
  10. ペイン転位 Payne Rearrangement

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP