[スポンサーリンク]

化学者のつぶやき

CO2が原料!?不活性アルケンのアリールカルボキシ化反応の開発

[スポンサーリンク]

可視光レドックス触媒による不活性アルケンと二酸化炭素(CO2)とのアリールカルボキシ化が開発された。可視光照射下でのCO2ラジカルアニオンを用いた不活性アルケンの初の1,2-二官能基化反応である。

可視光レドックス触媒を用いたアルケンのカルボキシ化

二酸化炭素(CO2)は、安価で豊富に存在する有用な一炭素源である[1]。CO2を用いた種々の反応が知られる中で、アルケンのカルボキシ化への利用は古くから研究されてきた。近年では可視光を利用した手法も知られるが、利用可能な基質は電子不足アルケンまたはスチレン類が大部分であり[2]、不活性アルケンのカルボキシ化は数例に限られる(図1A)[3]

著者らは、不活性アルケンの低い反応性を克服すべく、反応性が高い一炭素源としてCO2ラジカルアニオンに注目した。CO2ラジカルアニオンを利用した電子不足アルケンのヒドロカルボキシ化は、2021年、JuiおよびWickensらにより同時期に報告された(図1B)[4]。本反応では、硫黄原子ラジカルの水素引き抜きによりギ酸塩からCO2ラジカルアニオンが生じ、電子不足アルケンに付加する。この報告の後、著者らは可視光レドックス触媒存在下CO2からCO2ラジカルアニオンを生成し、不活性アルケンのヒドロカルボキシ化を達成した(図1C)[5]。しかし、CO2ラジカルアニオンを利用する不活性アルケンのカルボキシ化は依然として発展途上にあり、1,2-二官能基化を伴うカルボキシ化は未だ実現されていなかった。

今回、筆者らはCO2ラジカルアニオンのアルケンへの付加後に生じる炭素ラジカルをアレーンで捕捉することで、不活性アルケンのカルボカルボキシ化に成功した(図1D)。分子内ラジカル付加が本反応の鍵である。

図1. (A) CO2を用いた手法 (B)(C) CO2ラジカルアニオンによる活性/不活性アルケンのヒドロカルボキシ化 (D) 本研究

 

“Arylcarboxylation of Unactivated Alkenes with CO2 via Visible-light Photoredox Catalysis”

Zhang, W.; Chen, Z.; Jiang, Y.-X.; Liao, L.-L.; Wang, W.; Ye, J.-H.; Yu, D.-G. Nat. Commun. 2023, 14, 3529–3538 DOI: 10.1038/s41467-023-39240-8

論文著者の紹介

研究者 : Da-Gang Yu (余达刚)

研究者の経歴

2003–2007 B.S., Sichuan University, China (Prof. Xiaoming Feng and Li-Hua Yuan) 

2007–2012 Ph.D., Peking University, China (Prof. Zhang-Jie Shi)

2012–2014 Postdoc, Münster University, Germany (Prof. Frank Glorius) 

2015– Professor, Sichuan University, China

研究内容:CO2利用反応、可視光レドックス触媒、ラジカル化学、新規遷移金属触媒

論文の概要

光触媒fac-Ir(ppy)3(Ir-1)およびチオール(T1)触媒存在下、CO2雰囲気中アルケン1にPhMe2SiHとCs2CO3を加え青色光を照射した。その後の酸処理により対応するカルボン酸2が、アルキル化によりメチルエステル3が得られた(図2A)。基質適用範囲を調査したところ、ベンゼン環に種々の官能基をもつアルケン(1a1e)で反応が進行した。また、5員環(2f)やヘテロ環(3a, 3b)の構築にも成功し、ニ置換アルケンも利用可能であった(2g, 2h)。

反応機構解明実験として、著者らはギ酸イオンの生成を確認した(図2B)。最適条件では、ギ酸イオンが収率50%で生成した(Entry 1)。この結果は、CO2ラジカルアニオンが反応に関与することを支持している。アルケン1aを加えない条件ではギ酸イオンの収率が向上したが(Entry 2)、これはCO2ラジカルアニオンが反応により消費されないためだと考えられる。一方、窒素雰囲気下で反応させると、1aの有無に依らずギ酸イオンは生成しなかった(Entries 3 and 4)。以上の結果とその他対照実験(本文参照)から、次の反応機構が提唱されている(図2C)[6]。まず、青色光により励起された[IrIII]*(4)がチオラート7を一電子酸化し、[IrII](5)とチイルラジカル8が生じる。この5がCO2を一電子還元しCO2ラジカルアニオンが生成するとともに、[IrIII](6)が再生する。生じたCO2ラジカルアニオンがアルケンにラジカル付加し中間体Aとなった後、アルキルラジカルが芳香環を攻撃し中間体Bを与える。そして、B8との水素移動反応(Hydrogen Atom Transfer: HAT)によって、カルボキシラートが生じるとともにチオール9が再生する。その後、カルボキシラートはプロトン化され生成物2aとなる。

図2. (A) 基質適用範囲 (B) ギ酸イオンの検出 (C) 推定反応機構

 

以上、CO2ラジカルアニオンを利用した不活性アルケンのカルボカルボキシ化が開発された。今後、不活性アルケンの官能基化の更なる発展が期待される。

参考文献

  1. (a) Lu, X.-B.; Ren, W.-M.; Wu, G.-P. CO2 Copolymers from Epoxides: Catalyst Activity, Product Selectivity, and Stereochemistry Control. Acc. Chem. Res. 2012, 45, 1721–1735. DOI: 1021/ar300035z (b) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using Carbon Dioxide as a Building Block in Organic Synthesis. Nat. Commun. 2015, 6, 5933–5947. 10.1038/ncomms6933 (c) He, M.; Sun, Y.; Han, B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angew. Chem., Int. Ed. 2022, 61, e202112835. 10.1002/anie.202112835
  2. (a) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Photochemical and Electrochemical Carbon Dioxide Utilization with Organic Compounds. Chin. J. Chem. 2018, 36, 644–659. 1002/cjoc.201700742 (b) Yeung, C. S. Photoredox Catalysis as a Strategy for CO2 Incorporation: Direct Access to Carboxylic Acids from a Renewable Feedstock. Angew. Chem., Int. Ed. 2019, 58, 5492–5502. 10.1002/anie.201806285 (c) He, X.; Qiu, L.-Q.; Wang, W.-J.; Chen, K.-H.; He, L.-N. Photocarboxylation with CO2: An Appealing and Sustainable Strategy for CO2 Fixation. Green Chem. 2020, 22, 7301–7320. DOI: 10.1039/D0GC02743J (d) Fan, Z.; Zhang, Z.; Xi, C. Light‐Mediated Carboxylation Using Carbon Dioxide. ChemSusChem, 2020, 13, 6201–6218. 10.1002/cssc.202001974 (e) Cai, B.; Cheo, H. W.; Liu, T.; Wu, J. Light‐Promoted Organic Transformations Utilizing Carbon‐Based Gas Molecules as Feedstocks. Angew. Chem., Int. Ed. 2021, 60, 18950–18980. DOI: 10.1002/anie.202010710 (f) Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Radical Carboxylative Cyclizations and Carboxylations with CO2. Acc. Chem. Res. 2021, 54, 2518–2531.
  3. (a) Morgenstern, D. A.; Wittrig, R. E.; Fanwick, P. E.; Kubiak, C. P. Photoreduction of Carbon Dioxide to Its Radical Anion by Nickel Cluster [Ni33-I)2(dppm)3]: Formation of Two Carbon–Carbon Bonds via Addition of CO2 to Cyclohexene. J. Am. Chem. Soc. 1993, 115, 6470–6471. DOI: 10.1021/ja00067a096 (b) Takahashi, K.; Sakurazawa, Y.; Iwai, A.; Iwasawa, N. Catalytic Synthesis of a Methylmalonate Salt from Ethylene and Carbon Dioxide through Photoinduced Activation and Photoredox-Catalyzed Reduction of Nickelalactones. ACS Catal. 2022, 12, 3776–3781. DOI: 10.1021/acscatal.2c01053
  4. (a) Hendy, C. M.; Smith, G. C.; Xu, Z.; Lian, T.; Jui, N. T. Radical Chain Reduction via Carbon Dioxide Radical Anion (CO2). J. Am. Chem. Soc. 2021, 143, 8987–8992. DOI: 10.1021/jacs.1c04427 (b) Alektiar, S. N.; Wickens, Z. K. Photoinduced Hydrocarboxylation via Thiol-Catalyzed Delivery of Formate Across Activated Alkenes. J. Am. Chem. Soc. 2021, 143, 13022–13028. DOI: 10.1021/jacs.1c07562
  5. Song, L.; Wang, W.; Yue, J.-P.; Jiang, Y.-X.; Wei, M.-K.; Zhang, H.-P.; Yan, S.-S.; Liao, L.-L.; Yu, D.-G. Visible-Light Photocatalytic Di- and Hydro-Carboxylation of Unactivated Alkenes with CO2. Nat. Cat. 2022, 5, 832–838. DOI: 1038/s41929-022-00841-z
  6. Hydrocarboxylation of unactivated alkenes using CO2 radical anions generated from formate was also reported very recently, see: Alektiar, S. N.; Han, J.; Dang, Y.; Rubel, C. Z.; Wickens, Z. K. Radical Hydrocarboxylation of Unactivated Alkenes via Photocatalytic Formate Activation. J. Am. Chem. Soc. 2023, 145, 10991–10997. DOI: 10.1021/jacs.3c03671
  7. (a) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Generation of Alkoxyl Radicals by Photoredox Catalysis Enables Selective C(sp3)–H Functionalization under Mild Reaction Conditions. Angew. Chem., Int. Ed. 2015, 55, 1872–1875. DOI: 1002/anie.201510014 (b) Chen, W.; Liu, Z.; Tian, J.; Li, J.; Ma, J.; Cheng, X.; Li, G. Building Congested Ketone: Substituted Hantzsch Ester and Nitrile as Alkylation Reagents in Photoredox Catalysis. J. Am. Chem. Soc. 2016, 138, 12312–12315. DOI: 10.1021/jacs.6b06379 (c) Jiang, M.; Li, H.; Yang, H.; Fu, H. Room‐Temperature Arylation of Thiols: Breakthrough with Aryl Chlorides. Angew. Chem., Int. Ed. 2016, 56, 874–879. DOI: 10.1002/anie.201610414
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. MEDCHEM NEWS 30-3号「メドケムシンポ優秀賞」
  2. タンパク質を華麗に模倣!新規単分子クロリドチャネル
  3. 人工プレゼン動画をつくってみた
  4. (-)-Cyanthiwigin Fの全合成
  5. 触媒的syn-ジクロロ化反応への挑戦
  6. 年収で内定受諾を決定する際のポイントとは
  7. エステルをアルデヒドに変換する新手法
  8. 化学に耳をすませば

注目情報

ピックアップ記事

  1. ホウ素から糖に手渡される宅配便
  2. 第8回慶應有機化学若手シンポジウム
  3. 脂質ナノ粒子によるDDS【Merck/Avanti Polar Lipids】
  4. 人の鼻の細菌が抗菌作用がある化合物をつくっていたーMRSAに効果
  5. マツタケオール mushroom alcohol
  6. 自動車の電動化による素材・化学業界へのインパクト
  7. バールエンガ試薬 Barluenga’s Reagent
  8. 1-トリフルオロメチル-3,3-ジメチル-1,2-ベンゾヨードキソール:1-Trifluoromethyl-3,3-dimethyl-1,2-benziodoxole
  9. 第38 回化学反応討論会でケムステをみたキャンペーン
  10. ルミノール誘導体を用いるチロシン選択的タンパク質修飾法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP