[スポンサーリンク]

化学者のつぶやき

合成ルートはどれだけ”良く”できるのか?分子構造からプロセス質量強度を予測する SMART-PMI

[スポンサーリンク]

概要

医薬品をはじめとする有機分子の工業生産では、単に経済的につくるだけでなく、環境への影響に配慮した合成ルートの実現が求められている。このグリーン&サステイナブルケミストリーの観点から、プロセス質量強度(Process Mass Intensity, PMI)はある合成ルートが原料やコスト、持続可能性に与える影響を評価するための重要な指標である。全体あるいは特定のステップの PMI を計算し、最適化することは、世界における製薬業界とくにプロセス化学部門で一般的になってきている。

それでは、合成標的とする化合物を合成するときに、合成ルートはどれだけ”良く”できるのだろうか?Merck (MSD) の Sherer らは、2022年に標的の分子構造のみからPMIを予測するSMART-PMI(in-Silico MSD Aspirational Research Tool)を開発した[1]。この方法では、2次元の化学構造のみを用いて、分子の複雑さ(Complexity)と分子量(MW)から PMI の予測値を得ることができる。

SMART-PMI = (0.13 x MW) + (177 x Complexity) – 252

SMART PMI を予測するために使用するそれぞれの係数などは、MSDの内部で得られた過去のPMIデータを Complexity と MW によって再現するような機械学習モデルによって算出している。また、分子の複雑さ Complexity は著者らが以前開発した方法[2]によって算出している(算出するための code は GitHubで公開されている[3])。

使い方

プロセス化学の立場からは、SMART-PMI は構造のみから予測されるため、メディシナルの経路ででてきた悪い(大きな) PMI をプロセス化学の工夫でどこまで良く(小さく)すべきか、という指標として使うことができる。例えば実際の PMI をSMART-PMI で割った値が 1 付近(0.9~1.1) であれば、これまでに開発したプロセスと同程度の最適化ができたということで「成功(Successful)」と評価できる。同様にして [実際のPMI]/[SMART-PMI] = 0.5~0.9 は「世界標準(Exceptional)」、 0.5 未満まで下げることができたら「熱望的(Aspirational)」と評価できる。メディシナルなど分子設計の立場からは、複数の候補化合物を選択可能な場合は、SMART-PMI の小さい方を選んだ方が製造プロセスにおけるリスクを回避しやすいとも考えられる。

実例

Gefapixant (MK-7264)[1]
計算した complexity = 2.4 (citrateは除く);MW = 353 (citrateは除く)
SMART-PMI = 218(citrateは除く) + 20(citrate) = 238 (citrate 含む)
PMI Successful = 216–259; PMI Exceptional = 129–215; PMI Aspirational = <129

実際の臨床試験用プロセスの PMI = 366 … SMART-PMI (238)より大きく、従来の技術や考え方をつかって改善できる余地があると評価できる。
2020年に公開された実際の工業プロセスの PMI = 88[1](原著論文[4]中では78と記載) … Aspirational のレベルまで下げることができた、優れたルートであると評価できる。

参考文献

  1. Sherer, E. C.; Bagchi, A.; Kosjek, B.; Maloney, K. M.; Peng, Z.; Robaire, S. A.; Sheridan, R. P.; Metwally, E.; Campeau, L.-C. Driving Aspirational Process Mass Intensity Using Simple Structure-Based Prediction. Org. Process Res. Dev. 2022, 26, 1405-1410. DOI: 10.1021/acs.oprd.1c00477
  2. Sheridan, R. P.; Zorn, N.; Sherer, E. C.; Campeau, L.-C.; Chang, C. Z.; Cumming, J.; Maddess, M. L.; Nantermet, P. G.; Sinz, C. J.; O’Shea, P. D. Modeling a Crowdsourced Definition of Molecular Complexity. Journal of Chemical Information and Modeling 2014, 54, 1604-1616. DOI: 10.1021/ci5001778
  3. https://github.com/Merck/compoundcomplexity 利用環境として MOE とPerl が必要。
  4. Ren, H.; Maloney, K. M.; Basu, K.; Di Maso, M. J.; Humphrey, G. R.; Peng, F.; Desmond, R.; Otte, D. A. L.; Alwedi, E.; Liu, W.; et al. Development of a Green and Sustainable Manufacturing Process for Gefapixant Citrate (MK-7264) Part 1: Introduction and Process Overview. Org. Process Res. Dev. 2020, 24, 2445-2452. DOI: 10.1021/acs.oprd.0c00248

関連記事

関連書籍

[amazonjs asin=”4621088157″ locale=”JP” title=”プロセス化学 第2版: 医薬品合成から製造まで”] [amazonjs asin=”4759814922″ locale=”JP” title=”アート オブ プロセスケミストリー: メルク社プロセス研究所での実例”]
Avatar photo

Naka Research Group

投稿者の記事一覧

研究グループで話題となった内容を紹介します

関連記事

  1. ケムステの記事が3650記事に到達!
  2. ケミカルバイオロジーとバイオケミストリー
  3. 半導体・リチウムイオン電池にも!マイクロ波がもたらすプロセス改善…
  4. フォトメカニカル有機結晶を紫外線照射、世界最速で剥離
  5. 新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし
  6. gem-ジフルオロアルケンの新奇合成法
  7. アメリカ化学留学 ”立志編 ー留学の種類ー̶…
  8. 「無保護アルコールの直截的なカップリング反応」-Caltech …

注目情報

ピックアップ記事

  1. 化学者のためのエレクトロニクス講座~化合物半導体編
  2. パット・ブラウン Patrick O. Brown
  3. 会社説明会で鋭い質問をしよう
  4. 炭素をつなげる王道反応:アルドール反応 (1)
  5. シリンドロシクロファン生合成経路の解明
  6. 普通じゃ満足できない元素マニアのあなたに:元素手帳2016
  7. CFDで移動現象論111例題 – Ansys Fluentによる計算解法 –
  8. 子育て中の40代女性が「求人なし」でも、専門性を生かして転職を実現した秘訣とは
  9. ふるい”で気体分離…京大チーム
  10. 第96回日本化学会付設展示会ケムステキャンペーン!Part II

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP