[スポンサーリンク]

chemglossary

ソーレー帯 (Soret band) & Q帯 (Q band)

[スポンサーリンク]

両者ともに、一般的には吸収スペクトルを帰属する際に用いられる用語である。この帯域に吸収を持つ色素にはポルフィリン、フタロシアニン等がある。ポルフィリンがSoret帯で強い吸収を示す(Q帯の吸収は小さい)のに対し、フタロシアニンはQ帯で最も強い吸収を示す。

 ソーレー帯

ソーレー帯、Soret band、Soret peakとも言う。可視光の400 nm付近の紫から青色領域のことを指す。発見者であるジャック・ルイス・ソーレー(Jacques-Louis Soret)[1]にちなんで命名された。
例として生体内酵素であるCytochrome P450は、種々の金属を含んだポルフィリン環を酵素内に有しており、通常の酵素では見られない長波長領域に吸収を示す。

 

Q帯

Q帯は、600 nmから900 nmの波長の光領域に対応する。フタロシアニンは、700 nm付近のQ帯に鋭い極大吸収を有する。金属を含むフタロシアニンでは一本の吸収帯を示すが、無金属体や、置換基の導入などにより対称性の下がったフタロシアニンのQ帯のピークは、軌道の縮退が解けるために分裂する(下記)。

 

 自由電子モデルによる分子軌道

ポルフィリンやフタロシアニンのπ共役系は16員環で18電子を有している。分子軌道による解釈では、最低軌道以外を除く準位にはそれぞれ一次独立な二つの軌道が存在し、これらは縮退した組をなしている。これらの軌道にエネルギーの低い軌道から順に電子を入れていくと、HOMOはml =±4、LUMOはml =±5になる。

自由電子モデル

このモデルでHOMOからLUMOへの電子遷移を考えてみると、Δml = ±1とΔml = ±9という二通りが考えられる。エネルギー差を見ると同じように見えるが、電子間相互作用の違いにより、全角運動量の大きいΔml = ±9 の方がエネルギーが低い。このように二組の励起状態が得られる。ポルフィリン、フタロシアニンの可視・赤外領域に現れる吸収(Q帯)と紫外領域に現れる吸収(Soret帯)、はそれぞれΔml = ±9、Δml = ±1の励起状態に帰属される。

Δml は、角運動量に対する量子数。

Q帯という命名は、角運動量Δml = ±9の9、つまり日本語の”きゅう”に由来する。

 

参考文献

フタロシアニンの-化学と機能-

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. 酵素触媒反応の生成速度を考えるー阻害剤入りー
  2. 有機EL organic electroluminescence…
  3. 超臨界流体 Supercritical Fluid
  4. 不斉触媒 Asymmetric Catalysis
  5. 導電性ゲル Conducting Gels: 流れない流体に電気…
  6. ケミカルバイオロジー chemical biology
  7. 分取薄層クロマトグラフィー PTLC (Preparative …
  8. O-脱メチル化・脱アルキル化剤 基礎編

注目情報

ピックアップ記事

  1. ナトリウム Sodium -食塩やベーキングパウダーに使用
  2. 化学と株価
  3. デヴィッド・ナギブ David A. Nagib
  4. ダイアモンドの双子:「神話」上の物質を手のひらに
  5. 第23回「化学結合の自在切断 ・自在構築を夢見て」侯 召民 教授
  6. 創薬懇話会2025 in 大津
  7. ポンコツ博士の海外奮闘録XXIV ~博士の危険地帯サバイバル 筒音編~
  8. ナイトレン
  9. クラーク・スティル W. Clark Still
  10. 思わぬ伏兵・豚インフルエンザ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年12月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP