[スポンサーリンク]

M

向山アルドール反応 Mukaiyama Aldol Reaction

 

概要

通常酸・塩基で促進される古典的アルドール反応は可逆反応であり、エノラート生成時の立体制御が難しく、複雑な混合物を与える。

1970年代の向山らによる研究で、単離生成・長期保存可能なシリルエノールエーテル・ケテンシリルアセタールなどを求核剤に用い、交差アルドール反応を進行させることができるようになった。

mukaiyama_aldol_12.gif

実験室レベルでは有用な反応であり、様々な複雑化合物合成へと応用もされている。

アクティベーターのLewis酸は触媒量で済むも条件も多い。また、フッ素アニオンなどのLewis塩基もシリルエノールエーテルのアクティベーターとして働きうる。

様々な不斉触媒を用い、触媒的不斉合成への適用も活発に行われている。

基本文献

 

反応機構

ケイ素のルイス酸性は弱く、カルボニルへの配位は起こりにくい。六員環遷移状態をとれず、線形遷移状態で反応が進行する。シリルエノラートの幾何異性によらずsynが主生成物として得られる傾向にあるが、リチウムエノラートやボロンエノラートなどに比較して、遷移状態の配座自由度が高いため、高い選択性を発現させることは困難となる。立体要因および双極子効果に大きく依存する。
mukaiyama_aldol_2.gif

反応例

mukaiyama_aldol_3.gif
触媒的不斉向山アルドール反応の例[1] mukaiyama_aldol_4.gif
一般にアセテート由来のエノラートは立体規制要因が少なく、選択性の発現が難しいと言われている。Carreiraらはこの点を解決した不斉触媒の開発に成功している。[2] mukaiyama_aldol_5.gif
ランタントリフラートは水系溶媒でも失活が遅いため、ホルムアルデヒド水溶液をそのまま不斉向山アルドール反応に用いる事が出来る。[3] mukaiyama_aldol_6.gif
Denmark[4a, b]および柴崎[4c]らによって、一般に低選択性・低反応性傾向にある非活性化型ケトンへの触媒的不斉アルドール反応が報告されている。
mukaiyama_aldol_10.gif
mukaiyama_aldol_7.gif
アルデヒド由来のシリルエノールエーテルを調製し、アルドール付加させることは困難をきわめる。かさ高いトリス(トリメチルシリル)シリル(TTMSS)基をもつエノールエーテルは、付加後生じるアルデヒドへの過剰付加を抑制する。このため、アルデヒド等価な求核剤として向山アルドール反応に使用できる。[5] mukaiyama_aldol_9.gif
Lewis塩基活性化型・向山タイプアルドール反応[6] mukaiyama_aldol_11.gif

実験手順

トリフルオロメタンスルホン酸イミド(HNTf2)触媒を用いる向山アルドール反応[7] mukaiyama_aldol_8.gif

実験のコツ・テクニック

 

参考文献

[1] (a) Mukaiyama, T.; Kobayashi, S.; Uchiro, H.; Shiina, I. Chem. Lett. 1990, 129. doi:10.1246/cl.1990.129 (b) Kobayashi, S.; Fujishita, Y.; Mukaiyama, T. Chem. Lett. 1990, 1455. doi:10.1246/cl.1990.1455.

[2] Carreira, E. M. et al. J. Am. Chem. Soc. 1994116, 8837. DOI: 10.1021/ja00098a065

[3] (a) Kobayashi, S. et al. J. Am. Chem. Soc. 2004126, 12236. DOI: 10.1021/ja047896i (b) Kobayashi, S. et al. Org. Lett. 20057, 4729. DOI: 10.1021/ol051965w

[4] (a) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2002124, 4233.[abstract] (b) Denmark, S. E.; Fan, Y., Eastgate, M. D. J. Org. Chem. 2005, 70, 5235. DOI: 10.1021/jo0506276 (c) Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem.

Soc. 2006, 128, 7164.DOI: 10.1021/ja061815w

[5] (a) Boxer, B. M.; Yamamoto, H. J. Am. Chem. Soc. 2006129, 49.DOI: 10.1021/ja054725k (b) idem. J. Am. Chem. Soc. 2007,129, 2762. DOI: 10.1021/ja0693542 (c) Boxer, M. B.; Akakura, M.; Yamamoto, H. J. Am. Chem. Soc. 2008,130, 1580. DOI: 10.1021/ja7102586 (d) Boxer, M. B.; Yamamoto, H. Org. Lett. 200810, 453. DOI: 10.1021/ol702825p

[6] Song, J. J.; Tan, Z.; Reeves, J. T.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2007, 9, 1013. DOI: 10.1021/ol0630494

[7] Saito, S.; Nakadai, M.; Yamamoto, H. Synlett 2001, 1245. DOI: 10.1055/s-2001-16055

 

関連反応

 

関連書籍

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. クロム(η6-アレーン)カルボニル錯体 Cr(η6-arene)…
  2. 永田試薬 Nagata Reagent
  3. マクマリーカップリング McMurry Coupling
  4. ウィッティヒ転位 Wittig Rearrangement
  5. ウォール・チーグラー臭素化 Wohl-Ziegler Bromi…
  6. 秋山・寺田触媒 Akiyama-Terada Catalyst
  7. カーン グリコシド化反応 Kahne Glycosidation…
  8. カニッツァロ反応 Cannizzaro Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 三菱商事ナノテク子会社と阪大院、水に濡れるフラーレンを共同開発
  2. 第95回日本化学会付設展示会ケムステキャンペーン!Part I
  3. 化学五輪、「金」の高3連続出場 7月に東京開催
  4. シュタウディンガー反応 Staudinger Reaction
  5. オリンピセン (olympicene)
  6. アビシェック・チャッタージー Abhishek Chatterjee
  7. Akzonobelとはどんな会社? 
  8. 私がケムステスタッフになったワケ(3)
  9. Handbook of Reagents for Organic Synthesis: Reagents for Heteroarene Functionalization
  10. 住友化学、液晶関連事業に100億円投資・台湾に新工場

関連商品

注目情報

注目情報

最新記事

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

有機分子触媒ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

研究職の転職で求められる「面白い人材」

ある外資系機器メーカーのフィールドサービス職のポジションに対して候補者をご推薦しました。その時のエピ…

「不斉有機触媒の未踏課題に挑戦する」—マックス・プランク石炭化学研究所・List研より

「ケムステ海外研究記」の第18回目は、マックス・プランク石炭化学研究所(Benjamin List研…

ジムロート転位 (ANRORC 型) Dimroth Rearrangement via An ANRORC Mechanism

ポリアザインドリジンやピリミジンは、求核触媒の作用を受け 6 員環内の窒素原子と 6 員環に結合した…

Chem-Station Twitter

PAGE TOP