[スポンサーリンク]

M

向山アルドール反応 Mukaiyama Aldol Reaction

[スポンサーリンク]

 

概要

通常酸・塩基で促進される古典的アルドール反応は可逆反応であり、エノラート生成時の立体制御が難しく、複雑な混合物を与える。

1970年代の向山らによる研究で、単離生成・長期保存可能なシリルエノールエーテル・ケテンシリルアセタールなどを求核剤に用い、交差アルドール反応を進行させることができるようになった。

mukaiyama_aldol_12.gif

実験室レベルでは有用な反応であり、様々な複雑化合物合成へと応用もされている。

アクティベーターのLewis酸は触媒量で済むも条件も多い。また、フッ素アニオンなどのLewis塩基もシリルエノールエーテルのアクティベーターとして働きうる。

様々な不斉触媒を用い、触媒的不斉合成への適用も活発に行われている。

基本文献

 

反応機構

ケイ素のルイス酸性は弱く、カルボニルへの配位は起こりにくい。六員環遷移状態をとれず、線形遷移状態で反応が進行する。シリルエノラートの幾何異性によらずsynが主生成物として得られる傾向にあるが、リチウムエノラートやボロンエノラートなどに比較して、遷移状態の配座自由度が高いため、高い選択性を発現させることは困難となる。立体要因および双極子効果に大きく依存する。
mukaiyama_aldol_2.gif

反応例

mukaiyama_aldol_3.gif
触媒的不斉向山アルドール反応の例[1] mukaiyama_aldol_4.gif
一般にアセテート由来のエノラートは立体規制要因が少なく、選択性の発現が難しいと言われている。Carreiraらはこの点を解決した不斉触媒の開発に成功している。[2] mukaiyama_aldol_5.gif
ランタントリフラートは水系溶媒でも失活が遅いため、ホルムアルデヒド水溶液をそのまま不斉向山アルドール反応に用いる事が出来る。[3] mukaiyama_aldol_6.gif
Denmark[4a, b]および柴崎[4c]らによって、一般に低選択性・低反応性傾向にある非活性化型ケトンへの触媒的不斉アルドール反応が報告されている。
mukaiyama_aldol_10.gif
mukaiyama_aldol_7.gif
アルデヒド由来のシリルエノールエーテルを調製し、アルドール付加させることは困難をきわめる。かさ高いトリス(トリメチルシリル)シリル(TTMSS)基をもつエノールエーテルは、付加後生じるアルデヒドへの過剰付加を抑制する。このため、アルデヒド等価な求核剤として向山アルドール反応に使用できる。[5] mukaiyama_aldol_9.gif
Lewis塩基活性化型・向山タイプアルドール反応[6] mukaiyama_aldol_11.gif

実験手順

トリフルオロメタンスルホン酸イミド(HNTf2)触媒を用いる向山アルドール反応[7] mukaiyama_aldol_8.gif

実験のコツ・テクニック

 

参考文献

[1] (a) Mukaiyama, T.; Kobayashi, S.; Uchiro, H.; Shiina, I. Chem. Lett. 1990, 129. doi:10.1246/cl.1990.129 (b) Kobayashi, S.; Fujishita, Y.; Mukaiyama, T. Chem. Lett. 1990, 1455. doi:10.1246/cl.1990.1455.

[2] Carreira, E. M. et al. J. Am. Chem. Soc. 1994116, 8837. DOI: 10.1021/ja00098a065

[3] (a) Kobayashi, S. et al. J. Am. Chem. Soc. 2004126, 12236. DOI: 10.1021/ja047896i (b) Kobayashi, S. et al. Org. Lett. 20057, 4729. DOI: 10.1021/ol051965w

[4] (a) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2002124, 4233.[abstract] (b) Denmark, S. E.; Fan, Y., Eastgate, M. D. J. Org. Chem. 2005, 70, 5235. DOI: 10.1021/jo0506276 (c) Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem.

Soc. 2006, 128, 7164.DOI: 10.1021/ja061815w

[5] (a) Boxer, B. M.; Yamamoto, H. J. Am. Chem. Soc. 2006129, 49.DOI: 10.1021/ja054725k (b) idem. J. Am. Chem. Soc. 2007,129, 2762. DOI: 10.1021/ja0693542 (c) Boxer, M. B.; Akakura, M.; Yamamoto, H. J. Am. Chem. Soc. 2008,130, 1580. DOI: 10.1021/ja7102586 (d) Boxer, M. B.; Yamamoto, H. Org. Lett. 200810, 453. DOI: 10.1021/ol702825p

[6] Song, J. J.; Tan, Z.; Reeves, J. T.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2007, 9, 1013. DOI: 10.1021/ol0630494

[7] Saito, S.; Nakadai, M.; Yamamoto, H. Synlett 2001, 1245. DOI: 10.1055/s-2001-16055

 

関連反応

 

関連書籍

関連記事

  1. ダニシェフスキー・北原ジエン Danishefsky-Kitah…
  2. ヒドロメタル化 Hydrometalation
  3. 北エステル化反応 Kita Esterification
  4. ジュリア・リスゴー オレフィン合成 Julia-Lythgoe …
  5. 2,2,2-トリクロロエトキシカルボニル保護基 Troc Pro…
  6. ネバー転位 Neber Rearrangement
  7. バートリ インドール合成 Bartoli Indole Synt…
  8. 三枝・伊藤酸化 Saegusa-Ito Oxidation

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. スイス・ロシュの1―6月期、純利益4%増
  2. グラーメ・モード Graeme Moad
  3. フォン・リヒター反応 von Richter Reaction
  4. 若手化学者に朗報!YMC研究奨励金に応募しよう!
  5. Macユーザに朗報?ChemDrawバージョンアップ
  6. 暑いほどエコな太陽熱冷房
  7. 希少金属
  8. バイオマス燃料・化学品の合成と触媒の技術動向【終了】
  9. ウッドワード・ホフマン則を打ち破る『力学的活性化』
  10. フィブロイン Fibroin

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

創発型研究のススメー日本化学会「化学と工業:論説」より

学問のススメの続きは?「天は人の上に人を造らず,人の下に人を造らず」で始まる福沢諭吉の学問のスス…

11年ぶり日本開催、国際化学五輪プレイベントを3月に

7月に日本で開催される国際化学オリンピックを盛り上げようと、プレイベント「化学との出会い 未来を拓(…

文具に凝るといふことを化学者もしてみむとてするなり⑫: XP-PEN Deco01の巻

「実験大好き化学者も、デスクワークを快適化しようよ」な文具コーナーです。かなり久々の執筆で恐縮です。…

4つの異なる配位結合を持つ不斉金属原子でキラル錯体を組み上げる!!

第 296 回のスポットライトリサーチは、東京大学塩谷研究室で博士号を取得され、現在は京都大学寺西研…

ナタリー カロリーナ ロゼロ ナバロ Nataly Carolina Rosero-Navarro

Nataly Carolina Rosero-Navarro (コロンビア生まれ) は、日本在住の化…

【マイクロ波化学(株)ウェビナー】 #環境 #SDGs マイクロ波によるサステナブルなものづくり (プラ分解、フロー合成、フィルム、乾燥、焼成)

<内容>ご好評につき、先月と同じ内容のウェブセミナーを開催!事業・開発課題の一ソリュ…

銀ジャケを狂わせた材料 ~タイヤからの意外な犯人~

Tshozoです。先日ケムステスタッフの方が気になる関連論文を紹介されていましたので書くこととしまし…

富士フイルム和光純薬がケムステVプレミアレクチャーに協賛しました

ケムステVシンポとともにケムステオンライン講演会の両輪をなすケムステVプレミアクチャー(Vプレレク)…

Chem-Station Twitter

PAGE TOP