[スポンサーリンク]

M

向山アルドール反応 Mukaiyama Aldol Reaction

[スポンサーリンク]

 

概要

通常酸・塩基で促進される古典的アルドール反応は可逆反応であり、エノラート生成時の立体制御が難しく、複雑な混合物を与える。

1970年代の向山らによる研究で、単離生成・長期保存可能なシリルエノールエーテル・ケテンシリルアセタールなどを求核剤に用い、交差アルドール反応を進行させることができるようになった。

mukaiyama_aldol_12.gif

実験室レベルでは有用な反応であり、様々な複雑化合物合成へと応用もされている。

アクティベーターのLewis酸は触媒量で済むも条件も多い。また、フッ素アニオンなどのLewis塩基もシリルエノールエーテルのアクティベーターとして働きうる。

様々な不斉触媒を用い、触媒的不斉合成への適用も活発に行われている。

基本文献

 

反応機構

ケイ素のルイス酸性は弱く、カルボニルへの配位は起こりにくい。六員環遷移状態をとれず、線形遷移状態で反応が進行する。シリルエノラートの幾何異性によらずsynが主生成物として得られる傾向にあるが、リチウムエノラートやボロンエノラートなどに比較して、遷移状態の配座自由度が高いため、高い選択性を発現させることは困難となる。立体要因および双極子効果に大きく依存する。
mukaiyama_aldol_2.gif

反応例

mukaiyama_aldol_3.gif
触媒的不斉向山アルドール反応の例[1] mukaiyama_aldol_4.gif
一般にアセテート由来のエノラートは立体規制要因が少なく、選択性の発現が難しいと言われている。Carreiraらはこの点を解決した不斉触媒の開発に成功している。[2] mukaiyama_aldol_5.gif
ランタントリフラートは水系溶媒でも失活が遅いため、ホルムアルデヒド水溶液をそのまま不斉向山アルドール反応に用いる事が出来る。[3] mukaiyama_aldol_6.gif
Denmark[4a, b]および柴崎[4c]らによって、一般に低選択性・低反応性傾向にある非活性化型ケトンへの触媒的不斉アルドール反応が報告されている。
mukaiyama_aldol_10.gif
mukaiyama_aldol_7.gif
アルデヒド由来のシリルエノールエーテルを調製し、アルドール付加させることは困難をきわめる。かさ高いトリス(トリメチルシリル)シリル(TTMSS)基をもつエノールエーテルは、付加後生じるアルデヒドへの過剰付加を抑制する。このため、アルデヒド等価な求核剤として向山アルドール反応に使用できる。[5] mukaiyama_aldol_9.gif
Lewis塩基活性化型・向山タイプアルドール反応[6] mukaiyama_aldol_11.gif

実験手順

トリフルオロメタンスルホン酸イミド(HNTf2)触媒を用いる向山アルドール反応[7] mukaiyama_aldol_8.gif

実験のコツ・テクニック

 

参考文献

[1] (a) Mukaiyama, T.; Kobayashi, S.; Uchiro, H.; Shiina, I. Chem. Lett. 1990, 129. doi:10.1246/cl.1990.129 (b) Kobayashi, S.; Fujishita, Y.; Mukaiyama, T. Chem. Lett. 1990, 1455. doi:10.1246/cl.1990.1455.

[2] Carreira, E. M. et al. J. Am. Chem. Soc. 1994116, 8837. DOI: 10.1021/ja00098a065

[3] (a) Kobayashi, S. et al. J. Am. Chem. Soc. 2004126, 12236. DOI: 10.1021/ja047896i (b) Kobayashi, S. et al. Org. Lett. 20057, 4729. DOI: 10.1021/ol051965w

[4] (a) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2002124, 4233.[abstract] (b) Denmark, S. E.; Fan, Y., Eastgate, M. D. J. Org. Chem. 2005, 70, 5235. DOI: 10.1021/jo0506276 (c) Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem.

Soc. 2006, 128, 7164.DOI: 10.1021/ja061815w

[5] (a) Boxer, B. M.; Yamamoto, H. J. Am. Chem. Soc. 2006129, 49.DOI: 10.1021/ja054725k (b) idem. J. Am. Chem. Soc. 2007,129, 2762. DOI: 10.1021/ja0693542 (c) Boxer, M. B.; Akakura, M.; Yamamoto, H. J. Am. Chem. Soc. 2008,130, 1580. DOI: 10.1021/ja7102586 (d) Boxer, M. B.; Yamamoto, H. Org. Lett. 200810, 453. DOI: 10.1021/ol702825p

[6] Song, J. J.; Tan, Z.; Reeves, J. T.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2007, 9, 1013. DOI: 10.1021/ol0630494

[7] Saito, S.; Nakadai, M.; Yamamoto, H. Synlett 2001, 1245. DOI: 10.1055/s-2001-16055

 

関連反応

 

関連書籍

関連記事

  1. オキシ水銀化・脱水銀化 Oxymercuration-Demer…
  2. システイン選択的タンパク質修飾反応 Cys-Selective …
  3. 三枝・伊藤 インドール合成 Saegusa-Ito Indole…
  4. ハンチュ ピロール合成 Hantzsch Pyrrole Syn…
  5. O-アシルイソペプチド法 O-acylisopeptide Me…
  6. エシュバイラー・クラーク反応 Eschweiler-Clarke…
  7. ファヴォルスキー転位 Favorskii Rearrangeme…
  8. プラトー反応 Prato Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学系ラボの3Dプリンター導入ガイド
  2. DNAのもとは隕石とともに
  3. プラナーボラン - 有機エレクトロニクス界に期待の新化合物
  4. ピナー反応 Pinner Reaction
  5. (+)-フロンドシンBの超短工程合成
  6. のむ発毛薬の輸入承認 国内初、年内にも発売へ
  7. メソリティック開裂 mesolytic cleavage
  8. ヘキサン (hexane)
  9. rhodomolleins XX と XXIIの全合成
  10. 脱酸素的フッ素化 Deoxofluorination

関連商品

注目情報

注目情報

最新記事

コロナウイルスが免疫システムから逃れる方法(2)

前回の記事では、コロナウイルスの基礎知識とコロナウイルスが持つRNA分解酵素(EndoU)について述…

第79回―「高分子材料と流体の理論モデリング」Anna Balazs教授

第79回の海外化学者インタビューは、アンナ・バラズ教授です。ピッツバーグ大学 化学・石油工学科に在籍…

コロナウイルスが免疫システムから逃れる方法(1)

新型コロナウイルスによる感染症が、世界中で猛威を振るっています。この記事を書いている私も、大学の閉鎖…

換気しても、室内の化学物質は出ていかないらしい。だからといって、健康被害はまた別の話!

Human health is affected by indoor air quality. On…

海外機関に訪問し、英語講演にチャレンジ!~② アポを取ってみよう~

海外学会のついでに近郊機関に訪問し、ディスカッションと英語講演にトライしてみよう!シリーズ記事です。…

海外機関に訪問し、英語講演にチャレンジ!~① 基本を学ぼう ~

筆者は年1~2回ほど海外学会へ参加し、研究成果を対外的に発表しています。ここ数年はそれに数日の滞在を…

Chem-Station Twitter

PAGE TOP