[スポンサーリンク]

chemglossary

熱活性化遅延蛍光 Thermally Activated Delayed Fluorescence (TADF)

[スポンサーリンク]

熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence: TADF)とは、最低三重項励起状態(T1)から最低一重項励起状態(S1)へ熱的に励起されることで逆項間交差 Reverse intersystem crossing: RISC)を起こし、遅れて生成したS1状態から観測される蛍光である。TADFを応用することで重原子を用いることなく高い発光量子収率を達成することができるため、有機エレクトロルミネッセンス(Electro Luminescence: EL)を利用した有機発光ダイオード( Organic Light Emitting Diodes: OLEDs)への応用が期待されている。TADFは1930年代にエオシンYで初めて発見されたが、当初はあまり研究が多く行われることはなかった。2012年にOLEDsへの応用可能性が示されてから盛んに研究が行われている。

図1. エオシンY

概要

基本的にはスピン変換を伴う過程である項間交差はスピン禁制遷移であるが、スピン軌道相互作用により二状態間の混合が起こることでスピン変換が生じる。TADFは最低三重項励起状態(T1)と最低一重項励起状態(S1)のエネルギー差であるDESTを限りなく小さくすることで、室温程度の熱エネルギー(~26 meV)でもS1-T1間の遷移(逆項間交差 Reverse intersystem crossing: RISC)を可能にしている(図2a)。TADFを示す分子に対して時間分解発光を測定すると、通常のS1由来の初期蛍光(prompt fluorescence)とRISCにより生成したS1由来の遅延蛍光(TADF)の2成分が観測される(図2b)。また、遅延蛍光は三重項励起子由来であることから、空気中の酸素による影響を受けやすい。図2に一例を示すが、窒素バブリング下の測定(図2b,黒線)では見えている遅延蛍光が、酸素バブリング下の測定(図2b,赤線)では見えなくなっている。

図2. (a)TADFの基本的な発光機構、(b)発光の過渡減衰曲線[1]より。

次に効率的なTADFを達成するための分子設計指針を説明する。効率の良いTADFを達成するためには、いかにRISCを起こさせるかが最大の課題である。そのためにはS-T間の混合係数λを大きくする必要がある。混合係数λの値は

と近似される。 HSOはスピン軌道相互作用(Spin-Orbit Coupling:SOC)エネルギーである。S-T間の混合係数λを大きくすることで始状態と終状態の行列要素が大きくなるためS-T間の遷移が起こりやすくなりRISCの速度定数(kRISC)も大きくなる。λを大きくするには、HSOを大きくするか、ΔESTを小さくすることが必要である。TADF分子では重原子を用いないことを目指しているため、後者の指針がとられていることが多い。

多くのTADF分子ではドナー分子(Donor:D)とアクセプター分子(Acceptor:A)をつなげることで、最高被占軌道(Highest Occupied Molecular Orbital:HOMO)と最低空軌道(Lowest Unoccupied Molecular Orbital:LUMO)の重なりを小さくしている。ここでHOMO-LUMOの重なりを小さくすると、以下の理由によりΔESTを小さくできる。最初の励起状態であるS1やT1はHOMO-LUMO遷移が主要な遷移であり、このときT1-S1間の電子1,2のスピン交換相互作用Jの値は、

で表される。ここで、  φHOMOφLUMOは各分子軌道、r12は2電子間の距離を表す。従って、交換相互作用JはHOMO-LUMOの重なりを小さくすることで小さくなることがわかる。S1-T1間のエネルギー差ΔESTは2Jで与えられるため、ΔESTを小さくすることができる。

OLEDsに用いるTADF分子として、2012年に九州大学の安達教授らによってPLQY 94%を達成する分子として4CzIPN(図3a)が報告された1。この分子ではドナーとしてカルバゾール(carbazole:Cz)基を4つと、アクセプターとしてイソフタロニトリル(isophthalodinitrile :IPN)を持つ構造をしている。4CzIPNでは実際にHOMO-LUMOの重なりが小さくなっている(図3b,c)。TADF分子としてはこのようなドナー・アクセプター構造を持つ分子が多く報告されている2–4が、それ以外にも多重共鳴構造を持つ分子なども近年報告されている5,6

図3. (a)4CzIPNの分子構造、(b)HOMO、(c)LUMO。

 

さらに、TADFの詳細な機構については、近年の著しく研究が進展しており、S1やT1のエネルギー差だけでなく、T2などの高次励起状態を利用してスピン軌道相互作用を大きくする提案も多数報告されている7,8

TADFを用いた有機発光デバイスへの実用化に向けて

有機発光デバイスへの応用を少し説明する。電気励起の場合、通常一重項励起子が25%、三重項励起子が75%生成することが一般に知られている。そのため、蛍光材料を用いた場合励起子のうち25%しか活用できず効率が低かった。また、Irなどの重原子を用いた燐光材料では100%の励起子を活用できるため高効率だが、高コストであるという問題があった。(現在多く普及しているOLEDsに用いられている発光材料の多くが燐光材料、あるいは蛍光材料である。)しかしTADFを用いると低コスト(軽元素のみ)で100%の励起子を活用できる高効率材料が達成できる。2012年実際に100%近い発光効率を示す分子が開発され、それ以降有機EL材料としての研究が盛んに行われている。TADF分子を発光分子として用いるだけではなく、ホスト材料のように用いることで、高効率、低コスト、高色純度のOLEDsを作成でき9実用化も近づいている

 

参考文献

[1] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492 (7428), 234–238. DOI: 10.1038/nature11687

[2] Kaji, H.; Suzuki, H.; Fukushima, T.; Shizu, K.; Suzuki, K.; Kubo, S.; Komino, T.; Oiwa, H.; Suzuki, F.; Wakamiya, A.; et al. Nat. Commun. 2015, 6 (8476), 1–8. DOI: 10.1038/ncomms9476

[3] Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48 (93), 11392–11394. DOI: 10.1039/c2cc36237f

[4] Noda, H.; Nakanotani, H.; Adachi, C. Sci. Adv. 2018, 4(6), eaao6910. DOI: 10.1126/sciadv.aao6910

[5] Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Adv. Mater. 2016, 28 (14), 2777–2781. DOI: 10.1002/adma.201505491

[6] Kondo, Y.; Yoshiura, K.; Kitera, S.; Nishi, H.; Oda, S.; Gotoh, H.; Sasada, Y.; Yanai, M.; Hatakeyama, T. Nat. Photonics 2019, 13 (10), 678–682. DOI: 10.1038/s41566-019-0476-5.

[7] Gibson, J.; Monkman, A. P.; Penfold, T. J. ChemPhysChem 2016, 17, 2956–2961. DOI: 10.1002/cphc.201600662

[8] Noda, H.; Chen, X.-K.; Nakanotani, H.; Hosokai, T.; Miyajima, M.; Notsuka, N.; Kashima, Y.; Brédas, J.-L.; Adachi, C. Nat. Materials 2019, 18, 1084–1090. DOI: 10.1038/s41563-019-0465-6

[9] Nakanotani, H.; Higuchi, T.; Furukawa, T.; Masui, K.; Morimoto, K.; Numata, M.; Tanaka, H.; Sagara, Y.; Yasuda, T.; Adachi, C. Nat. Commun. 2014, 5, 1–7. DOI: 10.1038/ncomms5016

関連書籍

 

関連リンク

 

3150

投稿者の記事一覧

博士課程学生。専門は超高速分光。光機能分子のあれこれに興味があります。分光屋と材料屋、計算屋の懸け橋になりたいと思っています。

関連記事

  1. ソーレー帯 (Soret band) & Q帯 (Q …
  2. 多重薬理 Polypharmacology
  3. シュテルン-フォルマー式 Stern-Volmer equat…
  4. ビオチン標識 biotin label
  5. 不斉触媒 Asymmetric Catalysis
  6. 波動-粒子二重性 Wave-Particle Duality: …
  7. 一重項分裂 singlet fission
  8. 全合成 total synthesis

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. カルシウムイオン濃度をモニターできるゲル状センサー
  2. 天秤で量れるのは何mgまで?
  3. シェールガスにかかわる化学物質について
  4. ギース ラジカル付加 Giese Radical Addition
  5. 1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスファート:1-Butyl-3-methylimidazolium Hexafluorophosphate
  6. ビール好きならこの論文を読もう!
  7. あなたの天秤、正確ですか?
  8. 日本化学会がプロモーションムービーをつくった:ATP交流会で初公開
  9. 決算短信~日本触媒と三洋化成の合併に関連して~
  10. 医薬各社、アルツハイマー病薬の開発進まず

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第139回―「超高速レーザを用いる光化学機構の解明」Greg Scholes教授

第139回の海外化学者インタビューはグレッグ・ショールズ教授です。トロント大学化学科(訳注:現在はプ…

分子の対称性が高いってどういうこと ?【化学者だって数学するっつーの!: 対称操作】

群論を学んでいない人でも「ある分子の対称性が高い」と直感的に言うことはできるかと思います。しかし分子…

非古典的カルボカチオンを手懐ける

キラルなブレンステッド酸触媒による非古典的カルボカチオンのエナンチオ選択的反応が開発された。低分子触…

CEMS Topical Meeting Online 機能性材料の励起状態化学

1月28日に毎年行われている理研の無料シンポジウムが開催されるようです。事前参加登録が必要なので興味…

カルボン酸に気をつけろ! グルクロン酸抱合の驚異

 カルボン酸は、カルボキシ基 (–COOH) を有する有機化合物の一群です。カルボン…

第138回―「不斉反応の速度論研究からホモキラリティの起源に挑む」Donna Blackmond教授

第138回の海外化学者インタビューはドナ・ブラックモンド教授です。2009年12月現在、インペリアル…

Ru触媒で異なるアルキン同士をantiで付加させる

Ru触媒を用いたアルキンのanti選択的ヒドロおよびクロロアルキニル化反応が開発された。本反応は共役…

化学系必見!博物館特集 野辺山天文台編~HC11Nってどんな分子?~

bergです。突然ですが今回から「化学系必見!博物館特集」と銘打って、私が実際に訪れたいちおしの博物…

Chem-Station Twitter

PAGE TOP