[スポンサーリンク]

chemglossary

熱活性化遅延蛍光 Thermally Activated Delayed Fluorescence (TADF)

[スポンサーリンク]

熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence: TADF)とは、最低三重項励起状態(T1)から最低一重項励起状態(S1)へ熱的に励起されることで逆項間交差 Reverse intersystem crossing: RISC)を起こし、遅れて生成したS1状態から観測される蛍光である。TADFを応用することで重原子を用いることなく高い発光量子収率を達成することができるため、有機エレクトロルミネッセンス(Electro Luminescence: EL)を利用した有機発光ダイオード( Organic Light Emitting Diodes: OLEDs)への応用が期待されている。TADFは1930年代にエオシンYで初めて発見されたが、当初はあまり研究が多く行われることはなかった。2012年にOLEDsへの応用可能性が示されてから盛んに研究が行われている。

図1. エオシンY

概要

基本的にはスピン変換を伴う過程である項間交差はスピン禁制遷移であるが、スピン軌道相互作用により二状態間の混合が起こることでスピン変換が生じる。TADFは最低三重項励起状態(T1)と最低一重項励起状態(S1)のエネルギー差であるDESTを限りなく小さくすることで、室温程度の熱エネルギー(~26 meV)でもS1-T1間の遷移(逆項間交差 Reverse intersystem crossing: RISC)を可能にしている(図2a)。TADFを示す分子に対して時間分解発光を測定すると、通常のS1由来の初期蛍光(prompt fluorescence)とRISCにより生成したS1由来の遅延蛍光(TADF)の2成分が観測される(図2b)。また、遅延蛍光は三重項励起子由来であることから、空気中の酸素による影響を受けやすい。図2に一例を示すが、窒素バブリング下の測定(図2b,黒線)では見えている遅延蛍光が、酸素バブリング下の測定(図2b,赤線)では見えなくなっている。

図2. (a)TADFの基本的な発光機構、(b)発光の過渡減衰曲線[1]より。

次に効率的なTADFを達成するための分子設計指針を説明する。効率の良いTADFを達成するためには、いかにRISCを起こさせるかが最大の課題である。そのためにはS-T間の混合係数λを大きくする必要がある。混合係数λの値は

と近似される。 HSOはスピン軌道相互作用(Spin-Orbit Coupling:SOC)エネルギーである。S-T間の混合係数λを大きくすることで始状態と終状態の行列要素が大きくなるためS-T間の遷移が起こりやすくなりRISCの速度定数(kRISC)も大きくなる。λを大きくするには、HSOを大きくするか、ΔESTを小さくすることが必要である。TADF分子では重原子を用いないことを目指しているため、後者の指針がとられていることが多い。

多くのTADF分子ではドナー分子(Donor:D)とアクセプター分子(Acceptor:A)をつなげることで、最高被占軌道(Highest Occupied Molecular Orbital:HOMO)と最低空軌道(Lowest Unoccupied Molecular Orbital:LUMO)の重なりを小さくしている。ここでHOMO-LUMOの重なりを小さくすると、以下の理由によりΔESTを小さくできる。最初の励起状態であるS1やT1はHOMO-LUMO遷移が主要な遷移であり、このときT1-S1間の電子1,2のスピン交換相互作用Jの値は、

で表される。ここで、  φHOMOφLUMOは各分子軌道、r12は2電子間の距離を表す。従って、交換相互作用JはHOMO-LUMOの重なりを小さくすることで小さくなることがわかる。S1-T1間のエネルギー差ΔESTは2Jで与えられるため、ΔESTを小さくすることができる。

OLEDsに用いるTADF分子として、2012年に九州大学の安達教授らによってPLQY 94%を達成する分子として4CzIPN(図3a)が報告された1。この分子ではドナーとしてカルバゾール(carbazole:Cz)基を4つと、アクセプターとしてイソフタロニトリル(isophthalodinitrile :IPN)を持つ構造をしている。4CzIPNでは実際にHOMO-LUMOの重なりが小さくなっている(図3b,c)。TADF分子としてはこのようなドナー・アクセプター構造を持つ分子が多く報告されている2–4が、それ以外にも多重共鳴構造を持つ分子なども近年報告されている5,6

図3. (a)4CzIPNの分子構造、(b)HOMO、(c)LUMO。

 

さらに、TADFの詳細な機構については、近年の著しく研究が進展しており、S1やT1のエネルギー差だけでなく、T2などの高次励起状態を利用してスピン軌道相互作用を大きくする提案も多数報告されている7,8

TADFを用いた有機発光デバイスへの実用化に向けて

有機発光デバイスへの応用を少し説明する。電気励起の場合、通常一重項励起子が25%、三重項励起子が75%生成することが一般に知られている。そのため、蛍光材料を用いた場合励起子のうち25%しか活用できず効率が低かった。また、Irなどの重原子を用いた燐光材料では100%の励起子を活用できるため高効率だが、高コストであるという問題があった。(現在多く普及しているOLEDsに用いられている発光材料の多くが燐光材料、あるいは蛍光材料である。)しかしTADFを用いると低コスト(軽元素のみ)で100%の励起子を活用できる高効率材料が達成できる。2012年実際に100%近い発光効率を示す分子が開発され、それ以降有機EL材料としての研究が盛んに行われている。TADF分子を発光分子として用いるだけではなく、ホスト材料のように用いることで、高効率、低コスト、高色純度のOLEDsを作成でき9実用化も近づいている

 

参考文献

[1] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492 (7428), 234–238. DOI: 10.1038/nature11687

[2] Kaji, H.; Suzuki, H.; Fukushima, T.; Shizu, K.; Suzuki, K.; Kubo, S.; Komino, T.; Oiwa, H.; Suzuki, F.; Wakamiya, A.; et al. Nat. Commun. 2015, 6 (8476), 1–8. DOI: 10.1038/ncomms9476

[3] Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48 (93), 11392–11394. DOI: 10.1039/c2cc36237f

[4] Noda, H.; Nakanotani, H.; Adachi, C. Sci. Adv. 2018, 4(6), eaao6910. DOI: 10.1126/sciadv.aao6910

[5] Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Adv. Mater. 2016, 28 (14), 2777–2781. DOI: 10.1002/adma.201505491

[6] Kondo, Y.; Yoshiura, K.; Kitera, S.; Nishi, H.; Oda, S.; Gotoh, H.; Sasada, Y.; Yanai, M.; Hatakeyama, T. Nat. Photonics 2019, 13 (10), 678–682. DOI: 10.1038/s41566-019-0476-5.

[7] Gibson, J.; Monkman, A. P.; Penfold, T. J. ChemPhysChem 2016, 17, 2956–2961. DOI: 10.1002/cphc.201600662

[8] Noda, H.; Chen, X.-K.; Nakanotani, H.; Hosokai, T.; Miyajima, M.; Notsuka, N.; Kashima, Y.; Brédas, J.-L.; Adachi, C. Nat. Materials 2019, 18, 1084–1090. DOI: 10.1038/s41563-019-0465-6

[9] Nakanotani, H.; Higuchi, T.; Furukawa, T.; Masui, K.; Morimoto, K.; Numata, M.; Tanaka, H.; Sagara, Y.; Yasuda, T.; Adachi, C. Nat. Commun. 2014, 5, 1–7. DOI: 10.1038/ncomms5016

関連書籍

[amazonjs asin=”B07J1Q58LV” locale=”JP” title=”Highly Efficient OLEDs: Materials Based on Thermally Activated Delayed Fluorescence (English Edition)”] [amazonjs asin=”4274036316″ locale=”JP” title=”有機ELディスプレイ”] [amazonjs asin=”4781305733″ locale=”JP” title=”有機ELのデバイス物理・材料化学・デバイス応用 (エレクトロニクスシリーズ)”] [amazonjs asin=”4526065609″ locale=”JP” title=”有機エレクトロニクス入門”] [amazonjs asin=”4759814191″ locale=”JP” title=”光化学フロンティア 未来材料を生む有機光化学の基礎 (DOJIN ACADEMIC SERIES)”]

 

関連リンク

 

3150

投稿者の記事一覧

博士課程学生。専門は超高速分光。光機能分子のあれこれに興味があります。分光屋と材料屋、計算屋の懸け橋になりたいと思っています。

関連記事

  1. 【金はなぜ金色なの?】 相対論効果 Relativistic E…
  2. ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert…
  3. メビウス芳香族性 Mobius aromacity
  4. カスケード反応 Cascade Reaction
  5. 陽電子放射断層撮影 Positron Emmision Tomo…
  6. ソーレー帯 (Soret band) & Q帯 (Q …
  7. 蓄電池 Rechargeable Battery
  8. スナップタグ SNAP-tag

注目情報

ピックアップ記事

  1. ウーロン茶の中でも医薬品の化学合成が可能に
  2. P-キラルホスフィンの合成 Synthesis of P-chirogenic Phosphine
  3. CO酸化触媒として機能する、“無保護”合金型ナノ粒子を担持した基板を、ワンプロセスで調製する手法を開発
  4. ストックホルム国際青年科学セミナー・2018年の参加学生を募集開始
  5. 新規性喪失の例外規定とは?
  6. 2011年イグノーベル賞決定!「わさび警報装置」
  7. 高分子材料におけるマテリアルズ・インフォマティクスの活用:高分子シミュレーションの応用
  8. 有機テルル媒介リビングラジカル重合 Organotellurium-mediated Living Radical Polymerization (TERP)
  9. Reaxys Prize 2010発表!
  10. 【書籍】化学探偵Mr. キュリー

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

解毒薬のはなし その1 イントロダクション

Tshozoです。最近、配偶者に対し市販されている自動車用化学品を長期に飲ませて半死半生の目に合…

ビル・モランディ Bill Morandi

ビル・モランディ (Bill Morandi、1983年XX月XX日–)はスイスの有機化学者である。…

《マイナビ主催》第2弾!研究者向け研究シーズの事業化を学べるプログラムの応募を受付中 ★交通費・宿泊費補助あり

2025年10月にマイナビ主催で、研究シーズの事業化を学べるプログラムを開催いたします!将来…

化粧品用マイクロプラスチックビーズ代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

分子の形がもたらす”柔軟性”を利用した分子配列制御

第666回のスポットライトリサーチは、東北大学多元物質科学研究所(芥川研究室)笠原遥太郎 助教にお願…

柔粘性結晶相の特異な分子運動が、多段階の電気応答を実現する!

第665回のスポットライトリサーチは、東北大学大学院工学研究科(芥川研究室)修士2年の小野寺 希望 …

マーク・レビン Mark D. Levin

マーク D. レビン (Mark D. Levin、–年10月14日)は米国の有機化学者である。米国…

もう一歩先へ進みたい人の化学でつかえる線形代数

概要化学分野の諸問題に潜む線形代数の要素を,化学専攻の目線から解体・解説する。(引用:コロナ…

ノーベル賞受賞者と語り合う5日間!「第17回HOPEミーティング」参加者募集!

今年もHOPEミーティングの参加者募集の時期がやって来ました。HOPEミーティングは、博士課…

熱前駆体法を利用した水素結合性有機薄膜の作製とトランジスタへの応用

第664回のスポットライトリサーチは、京都大学大学院理学研究科(化学研究所・山田研究室)博士後期課程…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP