[スポンサーリンク]

ケムステニュース

アルツハイマー病患者の脳内から0価の鉄と銅が発見される

[スポンサーリンク]

英キール大学のテリング(Neil D. Telling)教授ほか13名の研究者たちは、X線画像化の技術を使ってふたりの重度のアルツハイマー病患者(故人)の脳内から摘出したアミロイドプラークの化学成分を分析しました。そして、プラークの核部分から酸化されていない状態の金属性の鉄と銅を発見しました。バクテリア・菌類・植物の種によってはこれらの鉄と銅を生成することが知られているそうですが、人間の細胞組織内で発見されたのはこれが初めて。この発見によって、なぜアミロイドプラークやもつれがかくも脳細胞にダメージを与えるかを説明できるかもしれないそうです。 (引用:GIZMODO6月29日)

先日、アルツハイマー病に対する抗体医薬が米国FDAで承認されたニュースを紹介しましたが、それとほぼ同時にアルツハイマー病患者の脳内の金属について調べた研究結果が発表されていました。

アルツハイマー病は記憶や思考能力がゆっくりと障害され、最終的には日常生活の最も単純な作業を行う能力さえも失われる病気で、日本人の認知症患者の約6割はアルツハイマー病が原因だと言われています。この厄介な病気に対して多くの製薬会社・研究グループが治療のための医薬品を開発してきましたが、根治につながるものはありませんでした。現在のところ2つ原因;1,アミロイドβと呼ばれるたんぱく質が脳内に溜まってアミロイドプラークを形成2、細胞内の異常リン酸化されたタウ・タンパク質による神経原線維変化、によって脳の正常な働きが阻害されるからだと考えられています。そんな中、アメリカの製薬会社「バイオジェン」と日本の「エーザイ」が開発したアルツハイマー病の新薬「アデュカヌマブ」は、1のアミロイドβを減少させる効果があることが確認され、FDAは迅速承認をしました。

上記のように脳の異常な状態によって引き起こされるアルツハイマー病の原因物質を減少させることで、治療する道は開かれ始めましたが、なぜ異常な状態が脳にダメージを与えているかは不明なままです。そこで本研究では、アミロイドプラークの特異性を調べる試みがなされました。

論文冒頭では、人体の脳には豊富な銅と鉄があり、それらは酵素の還元反応において重要な役目を果たしていること、鉄や銅を含むタンパク質は人体のすべてのタンパク質の約3%を占めていて、それらは重要な生理的プロセスを持っていることについて触れられています。一方で、これらの活性によりフェントン反応でヒドロキシルラジカルのような毒性のある物質も生成していることも分かっています。脳内の金属元素については、30年前に磁鉄鉱のナノ粒子が人体の脳内から発見されているものの鉄や銅の鉱物形成作用についての研究は稀で、微生物やウィルス、植物でしか調査されていませんでした。これまでの研究によってアミロイドプラークに何か特異的な銅と鉄が含まれていてることは判明していて、アルツハイマー病の発症にこれらが関連していると信じられていました。またアルツハイマー病の脳のアミロイドプラークには還元された酸化鉄が含まれていて、その神経毒によって病気がさらに進行させているかもしれないと考えられています。

このような背景から本研究では、走査型透過X 線顕微鏡(STXM)を使用してナノメートルオーダーでの元素の分布を調べました。STXMは、透過型電子顕微鏡の光源をX線に変えたもので、入射X線の波長を変えることで、化学状態の違いをマッピングすることができます。またSTXMでは、サンプルを真空中に置く必要がないので生体分子の観察にも適しているようです。STXMに加えてX線磁気円二色性(XMCD)を利用して金属元素の酸化状態を解明も行いました。

XMCD測定の模式図(出典:原著論文

最初に1例目の摘出したアミロイドプラークのSTXM観察を行いました。

A: アミロイドプラークのSTXM画像 B:銅と鉄のマッピング画像 C: 鉄の酸化状態のマッピング D:銅の高解像度画像 E:銅の酸化状態のマッピング F:観測位置F1とF2のX線吸収スペクトル(XAFS)とその帰属 G:観測位置G1からG6のX線吸収スペクトルとその帰属 HとI:リファレンスサンプルのスペクトル(出典:原著論文

まず鉄について、たくさんのナノスケールのイオン堆積物がアミロイドプラークから検出されました。鉄の酸化状態をマッピングしたところ、場所によって異なる酸化状態が確認され、吸収スペクトルを測定しリファレンスと比較すると、Fe0,Fe2+,Fe3+とFe3O4の鉄が含まれていることが判明しました。銅についても異なる酸化状態が確認され、 Cu0/Cu+,Cu2+,が存在していることが判明しました。この理由について、酸化還元んpサイクルがこのアミロイドプラーク内で起きているためだと本文中では推測しています。

2例目のアミロイドプラークも同様の手法で調べたところ、 Cu0/Cu+の存在が確認されました。

A: アミロイドプラークのSTXM画像 B:銅のマッピング画像 C: 鉄のマッピング画像 D:AからCの重ね合わせ画像 E:アミロイドプラーク中の銅とリファレンスサンプルのX線吸収スペクトルの違い F:観測位置F1からF3のX線吸収スペクトルとその帰属(出典:原著論文

1例目のアミロイドプラークコアを調べたところ、Cu0/Cu+の堆積を1点確認しました。リファレンスのスペクトルと比較すると、Cu0/Cu+ の混合相か不完全に結晶化したCu0であると推測しています。鉄の酸化状態についてもXMCDで調べたところ、測定点H2では磁性を示しFe0の存在が確認されました。

A: アミロイドプラークコアのSTXM画像 B:銅のマッピング画像 C: 鉄のマッピング画像 D:AからCの重ね合わせ画像 E:アミロイドプラーク中のX線吸収スペクトル F:Cの黄色い点線内の鉄の高解像度マッピング G: Cの黄色い点線内のXMCDマッピング H:観測位置H1とH2のX線吸収スペクトルとその帰属(出典:原著論文

XMCDスペクトルの比較においては測定点H1では同じスペクトルを示し、磁性は確認されませんでしたが、測定点H2ではFe0のリファレンスサンプルのように二色性が確認されました。

A:左右円偏光スペクトル(上:観測点H1 中:観測点H2 下:) B:XMCDスペクトル(出典:原著論文

この測定からもFe0が磁性を示していることが示されました。アミロイドプラークからFe0が確認されたことに関して、リファレンスのサンプルが空気中で酸化されて酸化鉄に変化するように、Fe0のナノ粒子の酸化は早いことが容易に予想できます。しかし上記の実験結果からは、Fe0のナノ粒子がしっかりと確認されたことから、死後のコンタミではなく体内でFe0が作られ、アミロイドプラークが保護していると主張しています。

Cu0とFe0の推定生成メカニズムですが、アミロイドβ錯体の還元が一つとして考えられ、質量分析において、衝突誘起解離でCu2+からCu+が観測されました。またNADPHや神経保護タンパク質による還元、錯体の不安定化に伴う不均一化、アミロイドβ錯体のカテコールやフェノール酸化などが考えられます。そして何かしらの還元反応によってCu0とFe0が生成しているということは、酸化ストレスが局所的に上昇し、神経炎症や神経細胞の故障を起こしている可能性があります。このようにこの還元反応の阻止が、細胞付近での金属触媒酸化の阻害による抗酸化メカニズムを示すかもしれません。

遷移金属の還元が特定の病気に関連しているとなれば、その追跡が新しい病理診断につながると考えられ、例えば鉄の臨床イメージングは応用が考えられます。また、アルツハイマー病に関しても鉄と銅の還元がアミロイドプラークの形成に関連しているとすれば、脳内の酸化ストレスを下げることがアルツハイマー病の代替治療法になるかもしれません。

まとめとして本研究により初めて体内からCu0とFe0の検出に成功しました。体内での金属の役割をより調べることは、新たな研究の視点としてアルツハイマー病と神経変性疾患の原因特定に役立つとコメントしています。また、今回使用したSTXMについてはナノ構造を明らかにできるため、生体の特性評価に有用であるとしています。

アルツハイマー病関係なしに、人体で新たな金属の状態が発見されたこと、人体で0価=金属銅と鉄を作り出していたことに大きな驚きを感じます。アルツハイマー病の原因と思われる物質の中で、0価の鉄や銅が生成しているこの発見は、金属の特異な酸化状態が病気の発症や進行に関連していることを示しており、この病気の解明や治療、予防すべての足掛かりになると思います。アルツハイマー病にスポットを当てて金属の酸化状態を調べましたが、他の病気でも酸化状態が異常な金属が生成しているかもしれず、この手法が他の病気の解明にも役立つかもしれません。今回は亡くなられた方の脳を使用しましたが、診断手法としてCTスキャンのように病理を切り取らずに調べることができるようになれば新たな診断方法の確立にもなると思います。論文の最後には0価の鉄や銅が生成する反応が推測されています。これらの推測の証拠が見つかるよう今後の研究に期待します。

関連書籍

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. エーザイ、抗てんかん剤「イノベロン」、ドイツなどで発売を開始
  2. 武田、フリードライヒ失調症薬をスイス社と開発
  3. 繊維強化プラスチックの耐衝撃性を凌ぐゴム材料を開発
  4. カネボウ化粧品、バラの香りの秘密解明 高級香水が身近に?
  5. カーボンナノチューブの毒性を和らげる長さ
  6. 化学企業のグローバル・トップ50が発表【2021年版】
  7. 構造化学の研究を先導する100万件のビッグデータ
  8. カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAI…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 原子3個分の直径しかない極細ナノワイヤーの精密多量合成
  2. ライセルト インドール合成 Reissert Indole Synthesis
  3. プラトー反応 Prato Reaction
  4. 観客が分泌する化学物質を測定することで映画のレーティングが可能になるかもしれない
  5. 長井長義 Nagayoshi Nagai
  6. 化学者のためのエレクトロニクス講座~無線の歴史編~
  7. 【7月開催】第十回 マツモトファインケミカル技術セミナー   オルガチックスによるPFAS(有機フッ素化合物)代替技術の可能性
  8. ケムステイブニングミキサー2017ー報告
  9. ノバルティス、後発薬品世界最大手に・米独社を買収
  10. チャート式実験器具選択ガイド:洗浄ブラシ・攪拌子編

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

保護基の使用を最小限に抑えたペプチド伸長反応の開発

第584回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

【ナード研究所】新卒採用情報(2025年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代……

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP