[スポンサーリンク]

chemglossary

二光子吸収 two photon absorption

[スポンサーリンク]

二光子吸収とは二個の光子を同時に吸収する励起過程である。その遷移レートは励起光強度の二乗に比例するため、集光レーザービームを用いる事により、μmレベルで空間選択的に分子を励起することが可能である。また、遷移エネルギーの半分のエネルギーの光子を用いるため、近赤外光で励起することが可能である。生体組織透過性の高い長波長の光を用いる事が出来るため、バイオ分野での研究にも用いられている。

 

歴史

1930年代にMaria Goppert-Mayer により理論的に提唱されたが、当時は存在し得ない現象であるとされていた。実験的に初めて観測されたのは1961年である。レーザーの進歩とともに二光子吸収の研究は盛んになっていき、1990年代には、二光子吸収蛍光顕微鏡が開発されるなど、現在では応用研究も盛んである。

Maria Goppert-Mayerの名にちなんで、二光子吸収の強度を表す単位としてGMが用いられている。

Maria Göppert-Mayer

写真:Maria Goppert-Mayer

一光子吸収と二光子吸収の違い

二光子吸収では、二つの光子が同時に相互作用する事になるので、レーザー強度の2乗に比例する。一方、一光子吸収は、レーザー強度とは直線的な比例関係にある。

分子の一光子吸収の強さはモル吸光係数に比例するが、二光子吸収の場合には二光子吸収断面積が用いられる。つまり、分子サイズが同じである場合二光子吸収断面積が大きい方が有利である。

中心対称性分子については、一光子吸収と二光子吸収では異なったパリティを持つ励起状態への遷移になる。異なった遷移状態なので一光子吸収のピーク波長を2倍にしても必ずしも二光子吸収のピーク波長と一致しない。対称性分子では、強い二光子吸収ピークは一光子吸収ピークの2倍よりも短波長側に観測される。

2光子吸収図

(図は論文1より抜粋)

 

分子設計指針

二光子吸収が実験的に初めて観測されたのは、1963年のことだが、その構造活性相関が明らかにされたのは、それから何年も後であった。理論的な計算および実験事実より、以下のような条件を満たす分子が2光子吸収を起こしやすいとされる。

  1. 長いπ共役系を有する分子(π電子の数が多い分子)
  2. π共役系の末端にドナー、アクセプターを有する分子

実験事実より、A-π-D-π-Aよりも、中心に電子不足な構造を有するD-π-A-π-Dの方が良いとされている(A:accepter、D:donor)。中心に電子豊富な構造を有するA-π-D-π-Aは、その不安定性のため、あまり研究が進んでいない。

  1. 中心対称な分子
  2. 一光子吸収帯と二光子吸収帯の近い分子
  3. 中心のコア部分のコンフォメーションが固定されていた方が良い

二光子吸収は、分子中心部分のπ bridgeのコンフォメーションにも非常に影響を受ける。一般には、コンフォメーションが固定されている方が良いとされている。

 

2光子吸収center core

  1. Vinylene (sp2) リンカーとEthynylene (sp)リンカーの比較

ethynyleneリンカーはvinyleneリンカーに比較して、共役が弱い。それは、C(sp1)とC(sp2) の結合において、π–πとπ*–π* エネルギーに差があるためである。しかし、二光子吸収の場合ではこの寄与は小さい。

また、ポルフィリンをリンカーで架橋する場合では、むしろethynyleneリンカーの方が優れている。それは、ethynyleneリンカーの方がフレキシビリティーが低く、ねじれて共役が切れてしまうことが無いからである。

 

2光子吸収linker

 

応用

二光子励起顕微鏡

2光子励起顕微鏡

(図は論文1より抜粋、一部筆者改変)

二光子励起顕微鏡では、生体透過性の良い長波長のレーザーを用いるため、通常の顕微鏡では観測できない、生体深部の組織の観測が可能である。一光子励起では、レーザーの強度に応じて、多くの空間で蛍光が励起されるのに対し、二光子励起では、光子密度の極めて高い焦点面のみを励起する事が出来る。

 

参考文献

[1] Angew. Chem. Int. Ed. 2009, 48, 3244 – 3266 DOI: 10.1002/anie.200805257

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. 徹底比較 特許と論文の違い ~明細書、審査編~
  2. アゾ化合物シストランス光異性化
  3. 活性ベースタンパク質プロファイリング Activity-Base…
  4. メソリティック開裂 mesolytic cleavage
  5. 波動-粒子二重性 Wave-Particle Duality: …
  6. 非リボソームペプチド Non-Ribosomal Peptide…
  7. Process Mass Intensity, PMI(プロセス…
  8. ソーレー帯 (Soret band) & Q帯 (Q …

注目情報

ピックアップ記事

  1. 水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の強力ツール~
  2. ジュリアス・レベック Julius Rebek, Jr.
  3. カスガマイシン (kasugamycin)
  4. 酵素触媒反応の生成速度を考えるー阻害剤入りー
  5. 「もはや有機ではない有機材料化学:フルオロカーボンに可溶な材料の創製」– MIT・Swager研より
  6. メラトニン melatonin
  7. ReaxysPrize2015ファイナリスト発表!
  8. まず励起せんと(EnT)!光触媒で環構築
  9. 次世代シーケンサー活用術〜トップランナーの最新研究事例に学ぶ〜
  10. 多彩な蛍光を発する単一分子有機化合物をつくる

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年11月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP