[スポンサーリンク]

chemglossary

リード指向型合成 / Lead-Oriented Synthesis

[スポンサーリンク]

有機合成が長足の発展を遂げる一方、既存の合成手法はdrug-likeな骨格を効率良く生み出すものではないとされている。必然としてヒット/リード発見用ライブラリの構成数は増え、無駄うちが多くなる傾向にある。そのため現場視点からは、「質の高いライブラリ構築」「ドラッグライクネスに富むライブラリ構築」を実現する方法論が求められている。

リード指向型合成(Lead-Oriented Synthesis, LOSは、GlaxoSmithKlineのグループから提案された最新創薬コンセプトの一つである[1]。一言でまとめると「薬になりやすい構造を狙って合成できる方法論を積極的に開発しよう」という主張である。

低分子創薬の構造展開にまつわる経験則と統計的事実

一般論として、リード最適化を推し進めると脂溶性(logP)と分子量(MW)は増していく傾向にある。しかしこれは必ずしも開発成功確率を上げる方向には寄与しない。これを適度に押しとどめるためのガイドラインはあると有益である。例えば以下のような指針が妥当性高いものとして経験的に受け入れられている。

LOS_1

  • リピンスキーの”ルールオブファイブ”  (MW < 500; logP < 5; H-bond donor <5; H-bond acceptor < 10)
  • 過度に大きな脂溶性(logP)とoff-target数は相関がある。過度に小さなlogPも膜透過性の面で不都合がある。MW<400の範囲では 1< logP < 3がリードとして適する。
  • 分子に重原子をひとつ付ける毎に、約10倍のオーダーで生物学的に関連する分子数が増える。
  • 芳香環の数(nAr)を3つより増やすのは好ましくない。
  • sp3炭素含有率(Fsp3)が大きいほど開発可能性は高まる。
  • 不安定官能基・反応性官能基・レドックス媒体になる構造は使用を避けるべき。

勿論あくまで目安なので、これから外れるものも存在する(たとえばPPI阻害剤などは典型)。それ以外に外れるものは、得てして特殊なトランスポーターを介して輸送されるものか、その特性的不利を超越するほど特別な生物学的機能を有することが多い。ゆえにこの原則からかけ離れているだけの構造を探索する指針は、そもそも論外であることが多い。

合成法の欠如がもたらすドラッグライクネスからの乖離

現在主流の合成法を使ったライブラリ構築は、自然とドラッグライクネスから離れていきがちであるという問題を抱えている。この是正は合成化学者が直接貢献できる問題解決と言える。

たとえばF(sp3)値と臨床試験生存率の相関傾向から、従来型クロスカップリング(sp2炭素標的)主体の構造展開にはそもそも開発リスクがあることも合理化される。こういった技術に依存するコンビナトリアル化学は、上記指針から遠ざかる方向にしばしば向かうため、医薬探索効率が悪くなる。

市販化合物の>99%はlead-likenessを満たしていない。低コストで大量合成可能な合成法に制限があるため、分子スクリーニングライブラリが多様性を欠く現実を反映していると捉えることができる。

化合物ライブラリは設計時点から予想されるよりも高LogP値化合物を多く含んでしまう傾向がある(higher logP drift)。設計通りのライブラリを準備しようとしても、極性の高い化合物はしばしば合成・変換に失敗してしまうため、ライブラリから欠損していく確率が高いためである。既存の合成手法は極性官能基をもつものに広く適用可能なものが少ないとも言い換えられる。

Lead-Oriented Synthesis(LOS)とは

LOSは「医薬開発・最適化に活用可能な分子特性」を有する分子群を供給可能とする合成法と定義される。

LOSを体現する反応特性は、以上の議論を踏まえると以下のようにまとめられる。

  • 幅広いlead-likeな化合物構造を供給できる
  • 幅広い分子配列に対して適用可能であり、安価で高効率に変換を行える反応条件
  • 過度なlopP driftを引き起こさない
  • 幅広い極性官能基に対して耐性がある
  • 多数の求電子部位や反応中心を生じないような分子を供給できる

小さく極性な分子の合成が大きく非極性な分子の合成に比べて難しいこと、および上述のlogP driftを考慮すると、極性官能基許容性がおそらくもっとも重要で、また未成熟な要素である。こういった方法論は、水中化学反応、保護基フリー合成の発展を推し進める方向で進歩が期待できる。

関連論文

  1. “Lead-Oriented Synthesis: A New Opportunity for Synthetic Chemistry”  Nadin, A.; Hattotuwagama, C.; Churcher, I. Angew. Chem. Int. Ed. 2012, 51, 1114. DOI: 10.1002/anie.201105840
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 分子糊 モレキュラーグルー (Molecular Glue)
  2. 不斉触媒 Asymmetric Catalysis
  3. 多成分連結反応 Multicomponent Reaction…
  4. 二水素錯体 Dihydrogen Complexes
  5. 金属-有機構造体 / Metal-Organic Framewo…
  6. ビオチン標識 biotin label
  7. メタンハイドレート Methane Hydrate
  8. 原子分光分析法の基礎知識~誘導結合プラズマ発光分析法(ICP-O…

注目情報

ピックアップ記事

  1. 採用が広がるユーグレナのバイオディーゼル燃料、ユーグレナバイオジェット燃料も完成
  2. 光で水素を放出する、軽量な水素キャリア材料の開発
  3. 湿度変化で発電する
  4. バイオタージ Isolera: フラッシュ自動精製装置がSPEED UP!
  5. 触媒的C-H酸化反応 Catalytic C-H Oxidation
  6. 有機合成化学協会誌2023年3月号:Cynaropicri・DPAGT1阻害薬・トリフルオロメチル基・イソキサゾール・触媒的イソシアノ化反応
  7. 【いまさら聞けない?】アジドの取扱いを学んでおこう!
  8. ピクテ・スペングラー反応 Pictet-Spengler Reaction
  9. クレブス回路代謝物と水素でエネルギー炭素資源を創出
  10. 理系のためのフリーソフト Ver2.0

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP