[スポンサーリンク]

chemglossary

リード指向型合成 / Lead-Oriented Synthesis

有機合成が長足の発展を遂げる一方、既存の合成手法はdrug-likeな骨格を効率良く生み出すものではないとされている。必然としてヒット/リード発見用ライブラリの構成数は増え、無駄うちが多くなる傾向にある。そのため現場視点からは、「質の高いライブラリ構築」「ドラッグライクネスに富むライブラリ構築」を実現する方法論が求められている。

リード指向型合成(Lead-Oriented Synthesis, LOSは、GlaxoSmithKlineのグループから提案された最新創薬コンセプトの一つである[1]。一言でまとめると「薬になりやすい構造を狙って合成できる方法論を積極的に開発しよう」という主張である。

低分子創薬の構造展開にまつわる経験則と統計的事実

一般論として、リード最適化を推し進めると脂溶性(logP)と分子量(MW)は増していく傾向にある。しかしこれは必ずしも開発成功確率を上げる方向には寄与しない。これを適度に押しとどめるためのガイドラインはあると有益である。例えば以下のような指針が妥当性高いものとして経験的に受け入れられている。

LOS_1

  • リピンスキーの”ルールオブファイブ”  (MW < 500; logP < 5; H-bond donor <5; H-bond acceptor < 10)
  • 過度に大きな脂溶性(logP)とoff-target数は相関がある。過度に小さなlogPも膜透過性の面で不都合がある。MW<400の範囲では 1< logP < 3がリードとして適する。
  • 分子に重原子をひとつ付ける毎に、約10倍のオーダーで生物学的に関連する分子数が増える。
  • 芳香環の数(nAr)を3つより増やすのは好ましくない。
  • sp3炭素含有率(Fsp3)が大きいほど開発可能性は高まる。
  • 不安定官能基・反応性官能基・レドックス媒体になる構造は使用を避けるべき。

勿論あくまで目安なので、これから外れるものも存在する(たとえばPPI阻害剤などは典型)。それ以外に外れるものは、得てして特殊なトランスポーターを介して輸送されるものか、その特性的不利を超越するほど特別な生物学的機能を有することが多い。ゆえにこの原則からかけ離れているだけの構造を探索する指針は、そもそも論外であることが多い。

合成法の欠如がもたらすドラッグライクネスからの乖離

現在主流の合成法を使ったライブラリ構築は、自然とドラッグライクネスから離れていきがちであるという問題を抱えている。この是正は合成化学者が直接貢献できる問題解決と言える。

たとえばF(sp3)値と臨床試験生存率の相関傾向から、従来型クロスカップリング(sp2炭素標的)主体の構造展開にはそもそも開発リスクがあることも合理化される。こういった技術に依存するコンビナトリアル化学は、上記指針から遠ざかる方向にしばしば向かうため、医薬探索効率が悪くなる。

市販化合物の>99%はlead-likenessを満たしていない。低コストで大量合成可能な合成法に制限があるため、分子スクリーニングライブラリが多様性を欠く現実を反映していると捉えることができる。

化合物ライブラリは設計時点から予想されるよりも高LogP値化合物を多く含んでしまう傾向がある(higher logP drift)。設計通りのライブラリを準備しようとしても、極性の高い化合物はしばしば合成・変換に失敗してしまうため、ライブラリから欠損していく確率が高いためである。既存の合成手法は極性官能基をもつものに広く適用可能なものが少ないとも言い換えられる。

Lead-Oriented Synthesis(LOS)とは

LOSは「医薬開発・最適化に活用可能な分子特性」を有する分子群を供給可能とする合成法と定義される。

LOSを体現する反応特性は、以上の議論を踏まえると以下のようにまとめられる。

  • 幅広いlead-likeな化合物構造を供給できる
  • 幅広い分子配列に対して適用可能であり、安価で高効率に変換を行える反応条件
  • 過度なlopP driftを引き起こさない
  • 幅広い極性官能基に対して耐性がある
  • 多数の求電子部位や反応中心を生じないような分子を供給できる

小さく極性な分子の合成が大きく非極性な分子の合成に比べて難しいこと、および上述のlogP driftを考慮すると、極性官能基許容性がおそらくもっとも重要で、また未成熟な要素である。こういった方法論は、水中化学反応、保護基フリー合成の発展を推し進める方向で進歩が期待できる。

関連論文

  1. “Lead-Oriented Synthesis: A New Opportunity for Synthetic Chemistry”  Nadin, A.; Hattotuwagama, C.; Churcher, I. Angew. Chem. Int. Ed. 2012, 51, 1114. DOI: 10.1002/anie.201105840
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 分取薄層クロマトグラフィー PTLC (Preparative …
  2. ランタノイド Lanthanoid
  3. 不斉触媒 Asymmetric Catalysis
  4. 合成後期多様化法 Late-Stage Diversificat…
  5. 深共晶溶媒 Deep Eutectic Solvent
  6. 試験管内選択法(SELEX法) / Systematic Evo…
  7. 多重薬理 Polypharmacology
  8. 固体NMR

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. メーヤワイン アリール化反応 Meerwein Arylation
  2. ESIPTを2回起こすESDPT分子
  3. 有機リチウム試薬 Organolithium Reagents
  4. 第32回「生きている動物内で生理活性分子を合成して治療する」田中克典 准主任研究員
  5. 芳香族化合物のニトロ化 Nitration of Aromatic Compounds
  6. 普通じゃ満足できない元素マニアのあなたに:元素手帳2016
  7. ヘリウム不足再び?
  8. 岡本佳男 Yoshio Okamoto
  9. 位置選択的C-H酸化による1,3-ジオールの合成
  10. MIDAボロネートを活用した(-)-ペリジニンの全合成

関連商品

注目情報

注目情報

最新記事

投票!2018年ノーベル化学賞は誰の手に!?

今年も9月終盤にさしかかり、毎年恒例のノーベル賞シーズンがやって参りました!化学賞は日本時間…

ライトケミカル工業株式会社ってどんな会社?

ライトケミカル工業は自社製品を持たず、研究開発もしない、更に営業マンもいない独立資本の受託専門会社(…

クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

9月20日、クラリベイト・アナリティクス社から2018年の引用栄誉賞が発表されました。本賞は…

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

PAGE TOP