[スポンサーリンク]

chemglossary

リード指向型合成 / Lead-Oriented Synthesis

有機合成が長足の発展を遂げる一方、既存の合成手法はdrug-likeな骨格を効率良く生み出すものではないとされている。必然としてヒット/リード発見用ライブラリの構成数は増え、無駄うちが多くなる傾向にある。そのため現場視点からは、「質の高いライブラリ構築」「ドラッグライクネスに富むライブラリ構築」を実現する方法論が求められている。

リード指向型合成(Lead-Oriented Synthesis, LOSは、GlaxoSmithKlineのグループから提案された最新創薬コンセプトの一つである[1]。一言でまとめると「薬になりやすい構造を狙って合成できる方法論を積極的に開発しよう」という主張である。

低分子創薬の構造展開にまつわる経験則と統計的事実

一般論として、リード最適化を推し進めると脂溶性(logP)と分子量(MW)は増していく傾向にある。しかしこれは必ずしも開発成功確率を上げる方向には寄与しない。これを適度に押しとどめるためのガイドラインはあると有益である。例えば以下のような指針が妥当性高いものとして経験的に受け入れられている。

LOS_1

  • リピンスキーの”ルールオブファイブ”  (MW < 500; logP < 5; H-bond donor <5; H-bond acceptor < 10)
  • 過度に大きな脂溶性(logP)とoff-target数は相関がある。過度に小さなlogPも膜透過性の面で不都合がある。MW<400の範囲では 1< logP < 3がリードとして適する。
  • 分子に重原子をひとつ付ける毎に、約10倍のオーダーで生物学的に関連する分子数が増える。
  • 芳香環の数(nAr)を3つより増やすのは好ましくない。
  • sp3炭素含有率(Fsp3)が大きいほど開発可能性は高まる。
  • 不安定官能基・反応性官能基・レドックス媒体になる構造は使用を避けるべき。

勿論あくまで目安なので、これから外れるものも存在する(たとえばPPI阻害剤などは典型)。それ以外に外れるものは、得てして特殊なトランスポーターを介して輸送されるものか、その特性的不利を超越するほど特別な生物学的機能を有することが多い。ゆえにこの原則からかけ離れているだけの構造を探索する指針は、そもそも論外であることが多い。

合成法の欠如がもたらすドラッグライクネスからの乖離

現在主流の合成法を使ったライブラリ構築は、自然とドラッグライクネスから離れていきがちであるという問題を抱えている。この是正は合成化学者が直接貢献できる問題解決と言える。

たとえばF(sp3)値と臨床試験生存率の相関傾向から、従来型クロスカップリング(sp2炭素標的)主体の構造展開にはそもそも開発リスクがあることも合理化される。こういった技術に依存するコンビナトリアル化学は、上記指針から遠ざかる方向にしばしば向かうため、医薬探索効率が悪くなる。

市販化合物の>99%はlead-likenessを満たしていない。低コストで大量合成可能な合成法に制限があるため、分子スクリーニングライブラリが多様性を欠く現実を反映していると捉えることができる。

化合物ライブラリは設計時点から予想されるよりも高LogP値化合物を多く含んでしまう傾向がある(higher logP drift)。設計通りのライブラリを準備しようとしても、極性の高い化合物はしばしば合成・変換に失敗してしまうため、ライブラリから欠損していく確率が高いためである。既存の合成手法は極性官能基をもつものに広く適用可能なものが少ないとも言い換えられる。

Lead-Oriented Synthesis(LOS)とは

LOSは「医薬開発・最適化に活用可能な分子特性」を有する分子群を供給可能とする合成法と定義される。

LOSを体現する反応特性は、以上の議論を踏まえると以下のようにまとめられる。

  • 幅広いlead-likeな化合物構造を供給できる
  • 幅広い分子配列に対して適用可能であり、安価で高効率に変換を行える反応条件
  • 過度なlopP driftを引き起こさない
  • 幅広い極性官能基に対して耐性がある
  • 多数の求電子部位や反応中心を生じないような分子を供給できる

小さく極性な分子の合成が大きく非極性な分子の合成に比べて難しいこと、および上述のlogP driftを考慮すると、極性官能基許容性がおそらくもっとも重要で、また未成熟な要素である。こういった方法論は、水中化学反応、保護基フリー合成の発展を推し進める方向で進歩が期待できる。

関連論文

  1. “Lead-Oriented Synthesis: A New Opportunity for Synthetic Chemistry”  Nadin, A.; Hattotuwagama, C.; Churcher, I. Angew. Chem. Int. Ed. 2012, 51, 1114. DOI: 10.1002/anie.201105840
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 分子モーター Molecular Motor
  2. ケミカルバイオロジー chemical biology
  3. 分取薄層クロマトグラフィー PTLC (Preparative …
  4. ソーレー帯 (Soret band) & Q帯 (Q …
  5. 秘密保持契約(NDA)
  6. アトムエコノミー Atom Economy
  7. 試験管内選択法(SELEX法) / Systematic Evo…
  8. 陽電子放射断層撮影 Positron Emmision Tomo…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. リチウムイオン電池のはなし~1~
  2. (-)-ナカドマリンAの全合成
  3. 住友化・大日本住友薬、ファイザーと高血圧症薬で和解
  4. 遷移金属の不斉触媒作用を強化するキラルカウンターイオン法
  5. カーボンナノチューブ量産技術を国際会議で発表へ
  6. 発明対価280万円認める 大塚製薬元部長が逆転勝訴
  7. 3-メチル-1-フェニル-2-ホスホレン1-オキシド:3-Methyl-1-phenyl-2-phospholene 1-Oxide
  8. 第八回 ユニークな触媒で鏡像体をつくり分けるー林民生教授
  9. 菅沢反応 Sugasawa Reaction
  10. e.e., or not e.e.:

関連商品

注目情報

注目情報

最新記事

専門家要らず?AIによる圧倒的高速なスペクトル解釈

第169回目のスポットライトリサーチは、東京大学大学院工学系研究科博士課程・清原慎さんにお願いしまし…

日本プロセス化学会2018ウインターシンポジウム

ご案内日本プロセス化学会(JSPC)が年2回主催するシンポジウムは、最新のプロセス化学の知識を習…

フラーレンの“籠”でH2O2を運ぶ

過酸化水素分子内包フラーレン誘導体を、大気圧・室温条件下で合成する方法が開発された。分子内包フラ…

北エステル化反応 Kita Esterification

概要ルテニウム触媒存在下、エチニルエチルエーテル試薬を脱水剤として用い、カルボン酸とアルコールか…

一人二役のフタルイミドが位置までも制御する

N-ヒドロキシフタルイミドを用いる逆マルコフニコフ型のヒドロアミノ化が報告された。遷移金属触媒および…

ジアゾニウム塩が開始剤と捕捉剤を“兼務”する

アリールジアゾニウム塩を用いたプレニルカルバマート/ウレアのシクロアミノジアゾ化反応が開発された。入…

PAGE TOP