[スポンサーリンク]

chemglossary

フッ素のゴーシュ効果 Fluorine gauche Effect

フッ素は全元素中で最大の電気陰性度(4.0)をもつため、C-F結合は高度に分極しており双極子的な安定化効果をもたらす。σ*C-F結合も低エネルギーとなるため隣接電子と相互作用しうる。このため配座におけるゴーシュ効果(gauche effect)が発現する[1-7]。

たとえば冒頭図の様に、1,2-ジフルオロエタンはanti配座よりもgauche配座が支配的となる。一方、1,2-ジクロロエタン、1,2-ジブロモエタンはanti配座が優勢になる。この非直感的な効果は、隣接C-H結合の超共役効果[σC-H→σ*C-F]が、電気的反発を乗り越えるほど強いとするとらえ方によって説明できる。これは片方のフッ素を他の電子求引基で置換しても同じ効果が得られることからも理解される。

応用例1: 有機触媒の設計および改良

下記のイミニウム触媒では、側鎖のフッ素ゴーシュ効果およびN+―F静電相互作用によって、π面遮蔽がより効果的な配座が優勢となり、良い性能を示す[8]。

X線像:CCDC 751360

下記Rovis触媒では、活性中心遠隔に存在するフッ素原子が不斉収率の向上に重要な役割を果たしている。これはσC-H→σ*C-F、σC-H→σ*C-N、π→σ*C-Fの多重超共役効果によってFと立体障害基(iPr)が擬アキシアルに立ち、効果的な立体遮蔽が実現するためと説明できる[9]。

図は論文[9]より引用

応用例2: 生物活性分子の配座設計

γ-アミノ酪酸(GABA)をフッ素化したアナログは、その立体配置に応じて生物活性を異にする。これはフッ素ゴーシュ効果によって伸長(extended)もしくは屈曲(bent)の配座優先性が変化するためと説明される[10]。

下記は環状ペプチドの配座規制目的にフッ素原子を導入した例である。これも大きな配座の違いが表れる[11]。

関連文献

  1. “The Fluorine Gauche Effect: A Brief History” Thiehoff, C.;  Rey, Y. P.; Gilmour, R. Isr. J. Chem. 2017, 91. doi:10.1002/ijch.201600038
  2. “The influence of fluorine in asymmetric catalysis” Cahard, D.;  Bizet, V. Chem. Soc. Rev. 2014, 43, 135. doi: 10.1039/C3CS60193E
  3. “Organofluorine Chemistry: Synthesis and Conformation of Vicinal Fluoromethylene Motifs” O’Hagan, D. J. Org. Chem. 2012, 77, 3689. DOI: 10.1021/jo300044q
  4. “The C–F bond as a conformational tool in organic and biological chemistry” Hunter, L. Beil. J. Org. Chem. 2010, 6, 38. doi:10.3762/bjoc.6.38
  5. “Understanding organofluorine chemistry. An introduction to the C–F bond”  O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308. doi:10.1039/b711844a
  6. “Fluorine Conformational Effects in Organocatalysis: An Emerging Strategy for Molecular Design” Zimmer, L. E.; Sparr, C.; Gilmour, R. Angew. Chem. Int. Ed. 2011, 50, 11860. doi:10.1002/anie.201102027
  7. “Deconstructing Covalent Organocatalysis” Holland, M. C.; Gilmour, R. Angew. Chem. Int. Ed. 2015, 54, 3862.  doi:10.1002/anie.201409004
  8. “The Fluorine‐Iminium Ion Gauche Effect: Proof of Principle and Application to Asymmetric Organocatalysis” Sparr, C.; Schweizer, W. B.; Senn, H. M.; Gilmour, R. Angew. Chem. Int. Ed. 2009, 48, 3065. doi:10.1002/anie.200900405
  9. ”Catalytic Asymmetric Intermolecular Stetter Reaction of Heterocyclic Aldehydes with Nitroalkenes: Backbone Fluorination Improves Selectivity” DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.;  Rovis, T. J. Am. Chem. Soc. 2009, 131, 10872. DOI: 10.1021/ja904375q
  10. ”The enantiomers of syn-2,3-difluoro-4-aminobutyric acid elicit opposite responses at the GABAC receptor” Yamamoto, I.; Jordan, M. J. T.; Gavande,  N.; Doddareddy, M. R.; Chebib, M.; Hunter, L. Chem. Commun. 2012, 48, 829. doi:10.1039/C1CC15816C
  11. “Stereoselective Fluorination Alters the Geometry of a Cyclic Peptide: Exploration of Backbone‐Fluorinated Analogues of Unguisin A” Hu, X.-G.; Thomas, D. S.; Griffith, R.; Hunter, L. Angew. Chem. Int. Ed. 2014, 53, 6176. doi:10.1002/anie.201403071

関連書籍

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 血液―脳関門透過抗体 BBB-penetrating Antib…
  2. ケージド化合物 caged compound
  3. 非リボソームペプチド Non-Ribosomal Peptide…
  4. アゾ化合物シストランス光異性化
  5. 陽電子放射断層撮影 Positron Emmision Tomo…
  6. 固体NMR
  7. ステープルペプチド Stapled Peptide
  8. エピジェネティクス epigenetics

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ギース ラジカル付加 Giese Radical Addition
  2. 原子量に捧げる詩
  3. カンプス キノリン合成 Camps Quinoline Synthesis
  4. “click”の先に
  5. リチャード・ゼア Richard N. Zare
  6. 海洋天然物パラウアミンの全合成
  7. 【速報】2018年ノーベル化学賞は「進化分子工学研究への貢献」に!
  8. 日本薬学会第138年会 付設展示会ケムステキャンペーン
  9. 2011年人気記事ランキング
  10. アフマトヴィッチ反応 Achmatowicz Reaction

関連商品

注目情報

注目情報

最新記事

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

アントニオ・M・エチャヴァレン Antonio M. Echavarren

アントニオ・M・エチャヴァレン(Antonio M. Echavarren、1955年3月25日–)…

PAGE TOP