[スポンサーリンク]

chemglossary

フッ素のゴーシュ効果 Fluorine gauche Effect

[スポンサーリンク]

フッ素は全元素中で最大の電気陰性度(4.0)をもつため、C-F結合は高度に分極しており双極子的な安定化効果をもたらす。σ*C-F結合も低エネルギーとなるため隣接電子と相互作用しうる。このため配座におけるゴーシュ効果(gauche effect)が発現する[1-7]。

たとえば冒頭図の様に、1,2-ジフルオロエタンはanti配座よりもgauche配座が支配的となる。一方、1,2-ジクロロエタン、1,2-ジブロモエタンはanti配座が優勢になる。この非直感的な効果は、隣接C-H結合の超共役効果[σC-H→σ*C-F]が、電気的反発を乗り越えるほど強いとするとらえ方によって説明できる。これは片方のフッ素を他の電子求引基で置換しても同じ効果が得られることからも理解される。

応用例1: 有機触媒の設計および改良

下記のイミニウム触媒では、側鎖のフッ素ゴーシュ効果およびN+―F静電相互作用によって、π面遮蔽がより効果的な配座が優勢となり、良い性能を示す[8]。

X線像:CCDC 751360

下記Rovis触媒では、活性中心遠隔に存在するフッ素原子が不斉収率の向上に重要な役割を果たしている。これはσC-H→σ*C-F、σC-H→σ*C-N、π→σ*C-Fの多重超共役効果によってFと立体障害基(iPr)が擬アキシアルに立ち、効果的な立体遮蔽が実現するためと説明できる[9]。

図は論文[9]より引用

応用例2: 生物活性分子の配座設計

γ-アミノ酪酸(GABA)をフッ素化したアナログは、その立体配置に応じて生物活性を異にする。これはフッ素ゴーシュ効果によって伸長(extended)もしくは屈曲(bent)の配座優先性が変化するためと説明される[10]。

下記は環状ペプチドの配座規制目的にフッ素原子を導入した例である。これも大きな配座の違いが表れる[11]。

関連文献

  1. “The Fluorine Gauche Effect: A Brief History” Thiehoff, C.;  Rey, Y. P.; Gilmour, R. Isr. J. Chem. 2017, 91. doi:10.1002/ijch.201600038
  2. “The influence of fluorine in asymmetric catalysis” Cahard, D.;  Bizet, V. Chem. Soc. Rev. 2014, 43, 135. doi: 10.1039/C3CS60193E
  3. “Organofluorine Chemistry: Synthesis and Conformation of Vicinal Fluoromethylene Motifs” O’Hagan, D. J. Org. Chem. 2012, 77, 3689. DOI: 10.1021/jo300044q
  4. “The C–F bond as a conformational tool in organic and biological chemistry” Hunter, L. Beil. J. Org. Chem. 2010, 6, 38. doi:10.3762/bjoc.6.38
  5. “Understanding organofluorine chemistry. An introduction to the C–F bond”  O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308. doi:10.1039/b711844a
  6. “Fluorine Conformational Effects in Organocatalysis: An Emerging Strategy for Molecular Design” Zimmer, L. E.; Sparr, C.; Gilmour, R. Angew. Chem. Int. Ed. 2011, 50, 11860. doi:10.1002/anie.201102027
  7. “Deconstructing Covalent Organocatalysis” Holland, M. C.; Gilmour, R. Angew. Chem. Int. Ed. 2015, 54, 3862.  doi:10.1002/anie.201409004
  8. “The Fluorine‐Iminium Ion Gauche Effect: Proof of Principle and Application to Asymmetric Organocatalysis” Sparr, C.; Schweizer, W. B.; Senn, H. M.; Gilmour, R. Angew. Chem. Int. Ed. 2009, 48, 3065. doi:10.1002/anie.200900405
  9. ”Catalytic Asymmetric Intermolecular Stetter Reaction of Heterocyclic Aldehydes with Nitroalkenes: Backbone Fluorination Improves Selectivity” DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.;  Rovis, T. J. Am. Chem. Soc. 2009, 131, 10872. DOI: 10.1021/ja904375q
  10. ”The enantiomers of syn-2,3-difluoro-4-aminobutyric acid elicit opposite responses at the GABAC receptor” Yamamoto, I.; Jordan, M. J. T.; Gavande,  N.; Doddareddy, M. R.; Chebib, M.; Hunter, L. Chem. Commun. 2012, 48, 829. doi:10.1039/C1CC15816C
  11. “Stereoselective Fluorination Alters the Geometry of a Cyclic Peptide: Exploration of Backbone‐Fluorinated Analogues of Unguisin A” Hu, X.-G.; Thomas, D. S.; Griffith, R.; Hunter, L. Angew. Chem. Int. Ed. 2014, 53, 6176. doi:10.1002/anie.201403071

関連書籍

[amazonjs asin=”3662147874″ locale=”JP” title=”Organofluorine Chemistry: Techniques and Synthons (Topics in Current Chemistry)”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の…
  2. トランス効果 Trans Effect
  3. 重医薬品(重水素化医薬品、heavy drug)
  4. 極性表面積 polar surface area
  5. HKUST-1: ベンゼンが囲むケージ状構造体
  6. 生物学的等価体 Bioisostere
  7. 元素戦略 Element Strategy
  8. ポリメラーゼ連鎖反応 polymerase chain reac…

注目情報

ピックアップ記事

  1. 赤﨑 勇 Isamu Akasaki
  2. 国際化学オリンピック、日本の高校生4名「銀」獲得
  3. 大正製薬、女性用の発毛剤「リアップレディ」を来月発売
  4. 第152回―「PETイメージングに活用可能な高速標識法」Philip Miller講師
  5. カルタミン
  6. 光誘導アシルラジカルのミニシ型ヒドロキシアルキル化反応
  7. リビングラジカル重合ガイドブック -材料設計のための反応制御-
  8. シュタウディンガー ケテン環化付加 Staudinger Ketene Cycloaddition
  9. 1日1本の「ニンジン」でガン予防!?――ニンジンの効能が見直される
  10. グライコシンターゼ (Endo-M-N175Q) : Glycosynthase (Endo-M-N175Q)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP