[スポンサーリンク]

chemglossary

リピンスキーの「ルール・オブ・ファイブ」 Lipinski’s “Rule of Five”

[スポンサーリンク]

in vitro結合アッセイでヒットした化合物を用い、細胞・動物などのin vivo系で薬理活性測定を行うと、しばしば非常に弱い薬効しか示さないことがある。こういった場合には、膜透過性や代謝安定性など、標的結合能以外の面で化合物に問題があることが多い。

化合物が経口医薬品となるためには、消化器官から吸収され、細胞膜を通過し、細胞内に到達して効果を発揮する必要がある。

Lipinskiらは1997年に、医薬候補品リストと通常の有機化合物リストの比較を行い、経口医薬品になりやすい化合物の化学特性を「Rule of five」としてまとめ上げた[1]。見ての通り、5の倍数にちなむ、創薬化学者が簡便に記憶し用いやすい法則となっている。下記のうちいずれか2つに当てはまらない化合物は吸収が悪く、最終的に医薬品になりづらいとされる。この指針が示すとおり、低分子医薬の利点を最大限享受するには、化合物構造に適度な脂溶性比較的小さな分子量が要請される。

  1. 水素結合ドナー(OH, NH)が5個以下である。
  2. 水素結合アクセプター(N, Oなど)が10個以下である。
  3. オクタノール-水 分配係数(LogP)が5以下である。
  4. 分子量が500以下である。

しかしもちろん例外はあり、化合物特異的なトランスポーターがある場合や、抗菌薬、抗生物質、ビタミン、強心配糖体などはRule of fiveに適合しないとされている。経口投与性を持つ医薬品でも、Rule of fiveから外れるものは実在する。

参考文献

  1.  (a) “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings” Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug. Delivery Rev. 1997, 23, 3. doi:10.1016/S0169-409X(96)00423-1 (b) “Lead- and drug-like compounds: the rule-of-five revolution”. Lipinski, C. A., Drug Discovery Today: Technologies 2004, 1, 337. doi:10.1016/j.ddtec.2004.11.007

関連書籍

[amazonjs asin=”4807905848″ locale=”JP” title=”創薬化学”][amazonjs asin=”4860260406″ locale=”JP” title=”最新 創薬化学 -探索研究から開発まで- 上巻 改訂第2版”]

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. トリメチルロック trimethyl lock
  2. 不斉触媒 Asymmetric Catalysis
  3. エレクトロクロミズム Electrochromism
  4. CRISPR(クリスパー)
  5. ケミカルバイオロジー chemical biology
  6. 導電性ゲル Conducting Gels: 流れない流体に電気…
  7. カスケード反応 Cascade Reaction
  8. 徹底比較 特許と論文の違い ~明細書、審査編~

注目情報

ピックアップ記事

  1. 笑う化学には福来たる
  2. Spiber株式会社ってどんな会社?
  3. 硤合不斉自己触媒反応 Soai Asymmetric Autocatalysis
  4. ヘリウムガスのリサイクルに向けた検討がスタート
  5. アルケニルアミドに2つアリールを入れる
  6. アシロイン縮合 Acyloin Condensation
  7. 服部 倫弘 Tomohiro Hattori
  8. ゲルマベンゼニルアニオンを用いた単原子ゲルマニウム導入反応の開発
  9. エリック・メガース Eric Meggers
  10. MI-6、データ解析とノウハウ蓄積のための実験計画プラットフォーム「miHub」を全面刷新

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP