[スポンサーリンク]

chemglossary

【金はなぜ金色なの?】 相対論効果 Relativistic Effects

[スポンサーリンク]

相対性理論は、光速近くで運動する物体で顕著になる現象を表した理論です。電子や原子などのミクロな物質を扱う化学者にとって、相対性理論は馴染みが薄いかもしれません。しかし、”相対論効果”は、化学者だけでなく化学を専門としない人にとっても、身近に潜んでいる現象です。例えば、水銀が液体であることや金が金色であることは相対論効果によります。さらに学部レベルの化学の話をすれば、不活性電子対効果も相対論効果であり、ランタノイド収縮の一部も相対論効果によると言われています。本記事では、相対論効果の起源についてお話しし、相対論効果が化合物にどのような性質を与えるかについてお話します。

相対論効果の起源

相対論によると、光速付近 v で運動する物体の質量 m は、そうでないとき m0 と比べて増加します。

原子番号が大きくなり核電荷が大きくなると、最内殻の 1s 電子は強烈に核に引きつけられます。その結果、重原子における 1s 電子の速度は光の速度と比較できる程度になります。簡単な原子のモデルであるボーアのモデルによれば、水素原子型原子の電子の速度は、原子番号 Z に比例して大きくなります。水素原子 (Z =1) の場合では電子の速度は光速に比べて 1/137 程度ですが、水銀 (Z = 80) では 光速の 80/137 ≈ 58% に匹敵します。したがって、水銀などの重原子では、相対論による 1s 電子の質量の増加が無視できなくなります。

電子の質量の増加は、その電子の軌道の半径にも影響します。ボーアのモデルを考えると、水素型原子の軌道を表す式が、次のように原子の質量を分母に持つからです。すなわち、相対論効果による電子の質量の増加によって、1s 軌道の半径は縮むのです。

1s 軌道の収縮は、1s 軌道のみに影響するだけでは済みません。原子の個々の軌道は直交していなければならないからです。軌道の直交性を保つため、1s 軌道の収縮に伴い、2s, 3s, 4s… 軌道も同様に収縮します。では p 軌道や d, f 軌道ではどうなるのでしょうか。p 軌道は収縮します。ただし、角運動量による遠心力的な効果により、核付近の動径分布が s 軌道よりやや小さくなっているため、s 軌道ほどは収縮しません。一方、d 軌道や f 軌道は遠心力的な効果により、核付近での動径分布がさらに小さくなっているため、収縮した s 軌道による核電荷の遮蔽を効果的に受けるようになります。したがって d 軌道や f 軌道は、相対論効果により動径分布が拡大し、エネルギー的に不安定化します。

1s 軌道と 4s, 4p, 4d, および 4f 軌道の動径分布関数. 1s 軌道が収縮すると軌道の直交性を保つため, 他の軌道も収縮したり拡大したりします. 図中のオレンジの矢印は軌道の収縮を表し, 青い矢印は軌道の拡大を表します. 

これらの議論をまとめます。

重原子においては 1s 軌道が光速付近で運動するため、相対論効果により電子の質量が増加します。
1s 電子の質量の増加は 1s 軌道の収縮を招きます。
軌道の直交性により、1s 軌道の収縮に伴って、全ての s, p 軌道が縮小、d, f 軌道が拡大します。

重原子の s, p 軌道の安定化 (縮小) と d,f 軌道の不安定化 (拡大) に由来する現象は、すべて相対論効果と言えます。さらに、いわゆるスピン-軌道相互作用も相対論の効果によるものです。そのため、より厳密にいうと、p 軌道の収縮や d/f 軌道の拡大は電子のスピンによっても依存しており、電子のスピンと軌道の角運動量が平行であると、軌道の収縮や拡大がより大きくなります。

重金属の項において LS 結合ではなく jj 結合が利用されるのは相対論効果だといえます。相対論効果によって、同じ角運動量 l の軌道 (たとえば p 軌道 (l = 1)) であっても、電子のスピンの向きによってその軌道のエネルギーが異なるようになるのです。そのため、先に軌道角運動量 l とスピン角運動量 s の和である j を個々の軌道に割り当てて、そのあとで j を結合させるほうが適当であるというわけです。

次に相対論効果がもたらす具体例の数々を紹介したいと思います。

電子配置

6族である Cr や Mo は、d 軌道の半閉殻構造が安定であるため ((n–1)d)5(ns)1 の電子配置を取ります。しかし、第三遷移金属である W は半閉殻構造を壊した (5d)4(6s)2 の電子配置を取ります。これは相対論効果により、d軌道が不安定化し、s 軌道が安定化しているため、半閉殻構造を取るよりも s 軌道に電子を 2 つ置く方が安定だからです。

その他の第 3 周期金属も、第 2 周期金属に比べて dns2 配置を取りやすくなっています。

不活性電子対効果

重原子化合物において、重原子の結合価は同族の軽原子と比べて 2 小さくなることがあります。これは、価電子の s 軌道が安定化され、s 電子を取り除くためのイオン化エネルギーが高くなっているためと考えられます。

金が金色で銀が銀色

相対論効果により、金の 5d 軌道が不安定化し、6s 軌道が安定化しています。その結果、5d バンド→ 6s バンド (より厳密に言うとフェルミ準位) の遷移のエネルギーが可視光領域の青色に対応します。この吸収が金を金色にします。

一方、銀では相対論効果がそれほど強くないので、4d バンド→5s バンドの遷移が紫外領域に対応します。その結果、銀は可視光を吸収することなく、一般的な金属光沢をもつ無色 (銀色) を示します。

水銀が常温で液体

水銀が常温で液体であることを理解するために、H2 分子と He2 分子について考えます。H2 分子は 結合性 σ 軌道に 2 電子を収容し、結合次数が 1 となるため、安定な分子を作ります。一方、He2 分子では、反結合性 σ* 軌道にも 2 つの電子を収容しなければなりらず、結合次数が 0 となります。混成に利用可能な p 軌道も存在しません。このことが、He2 分子を非常に不安定な分子にします。実際、He は単原子分子として安定に存在します。

水銀 Hg は、相対論効果によって安定化された 6s 電子に 2 つの電子を収容しています。6p 軌道も相対論効果によって収縮していますが、6s 軌道ほどは収縮しないため、6s 軌道と 6p 軌道のエネルギー差は、相対論がないときに比べて大きくなっています。そのため Hg は p 軌道を持っていない He に近い電子構造を持っていると考えることができます。その結果、6s 軌道は Hg–Hg 間の結合に関わることはほとんどなく、Hg–Hg 結合は非常に弱くなります。このことが水銀の融点を下げ、水銀が常温で液体であることを説明します。

Hg22+ イオン

上の説明で Hg2分子が形成しにくいことをお話ししましたが、[Hg2]2+ 分子は溶液中や化合物中で安定に存在します。たとえば水銀は Cl–Hg–Hg–Cl のような 安定な直線状分子を形成し、これは[Hg2]2+ を核に持つ化合物だと考えられます。このような二原子分子イオンの形成は他の金属にはみられない稀な水銀の性質です。この理由は、(1) 6s 軌道と 6p 軌道のエネルギー差が大きいため、他の spn 混成軌道 (sp2 や sp3) が取りにくい、そして (2) 6s 軌道と 5d 軌道のエネルギー差が比較的小さいため、sdz2 混成軌道は比較的作りやすいということで説明されます。

まとめ

最後に、ここまで紹介した相対論効果やその他の相対論効果について下の周期表にまとめました。

重原子に特異な性質の多くは、「相対論効果だね」の一言で済まされてしまうことがあるように思います。しかし実際には、そのカラクリを丁寧に解説した参考書は少ないように感じていました。様々な現象が相対論効果で説明されますが、元をたどると s, p 軌道の安定化とd, f 軌道の不安定化で説明ができる場合が多いことを知ったときには、一気に知識が繋がった気がして嬉しかったことを記憶しています。この記事が、そのような体験のきっかけになれば幸いです。

関連記事

参考文献

  1. 網羅的なレビュー: Pyykkö, P. Chem. Rev. 1988, 88, 563. DOI: 10.1021/cr00085a006
  2. 比較的短い読み物: Norbby, L. J. J. Chem. Educ. 1991, 68, 110. DOI: 10.1021/ed068p110

関連書籍

やぶ

やぶ

投稿者の記事一覧

PhD候補生として固体材料を研究しています。Chem-Station を見て育った学生として、このコミュニティをより盛り上げていきたいです。高専出身。Twitter はじめました (下の Twitter のバナーでリンクがつながります)。ケムステ記事にはならないような些細なことを英語と日本語で不定期につぶやきます。

関連記事

  1. 非リボソームペプチド Non-Ribosomal Peptide…
  2. ラマン分光の基礎知識
  3. HKUST-1: ベンゼンが囲むケージ状構造体
  4. 酵母還元 Reduction with Yeast
  5. トップリス ツリー Topliss Tree
  6. 試験管内選択法(SELEX法) / Systematic Evo…
  7. メソリティック開裂 mesolytic cleavage
  8. 特殊ペプチド Specialty Peptide

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. シャンパンの泡、脱気の泡
  2. A-ファクター A-factor
  3. ストライカー試薬 Stryker’s Reagent
  4. ニュースタッフ参加
  5. 合成後期多様化法 Late-Stage Diversification
  6. C–NおよびC–O求電子剤間の還元的クロスカップリング
  7. アステラス製薬、過活動膀胱治療剤「ベシケア錠」製造販売承認取得
  8. マット・ショアーズ Matthew P. Shores
  9. メントール /menthol
  10. 特許資産規模ランキング トップ3は富士フイルム、LG CHEM、住友化学

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編

前回の化学研究で役に立つデータ解析入門:回帰分析の応用編では、Rを使ってエクセルにはできない回帰分析…

いろんなカタチの撹拌子を試してみた

大好評、「試してみた」シリーズの第5弾。今回は様々な化合物を反応させる際に必須な撹拌子(回転…

【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核酸 #有機合成 #凍結乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

<内容>本イベントは、医薬分野向けに事業・開発課題のソリューションとして、マイクロ波の適用例や効…

バイオマスからブタジエンを生成する新技術を共同開発

日本ゼオンは、理研、横浜ゴムと共同で設置している「バイオモノマー生産研究チーム」の研究により、バイオ…

【ケムステSlackに訊いてみた②】化学者に数学は必要なのか?

日本初のオープン化学コミュニティ・ケムステSlackの質問チャンネルに流れてきたQ&Aの紹介…

電子のやり取りでアセンの分子構造を巧みに制御

第308回のスポットライトリサーチは、北海道大学大学院総合化学院(鈴木研究室)・張本 尚さんにお願い…

第147回―「カリックスアレーンを用いる集合体の創製」Tony Coleman教授

第147回の海外化学者インタビューは、アンソニー・W・コールマン(通称トニー)教授です。フランスのリ…

ノーコードでM5Stack室内環境モニターを作ろう

COVID-19の影響で居室や実験室の換気状況を見直された方は多いと思います。化学系の実験室は定期的…

Chem-Station Twitter

PAGE TOP