[スポンサーリンク]

chemglossary

デンドリマー / dendrimer

[スポンサーリンク]

 

構成ユニットを放射状に組み立てることで、球状の形をなした巨大分子を総称してデンドリマー(dendrimer)と呼びます。その名称はデンドロン(ギリシャ語で樹木の意味)に由来しています。

1985年にTomaliaらによって発表された概念です[1]。はじめは座布団型分子や提灯型分子などと同様に、構造がユニークで面白い分子として紹介されていました。その後、デンドリマー表面に官能基を簡便に密集させられるという特性が注目を浴び、機能性超分子への応用可能性にスポットが当てられるようになりました。現在では世界各国の多くの研究者が、デンドリマーを用いる研究に取り組んでいます。

日本におけるデンドリマー研究の第一人者は、東京大学の相田卓三教授です。医薬品を目的の部位へ輸送するドラッグデリバリーシステムへの応用や光捕集アンテナ機能を有するデンドリマーなどが開発されています。

デンドリマー分子の合成は、中心のコアから外側に合成するダイバージェント法と、外殻からコアに向けて合成を進めるコンバージェント法に大別されます。1段階(デンドリマーでは1世代と数えることが慣習)進むごとに官能基密集度が指数関数的増加をみせるため、傍目から見るよりその合成はかなり難しいようです。 このため、実用化にはいくつものハードルを乗り越える必要があるとされています。

 

関連文献

[1] “A New Class of Polymers: Starburst-Dendritic Macromolecules”

Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polymer J. 1985, 17, 117.

This paper describes the first synthesis of a new class of topological macromolecules which we refer to as “starburst polymers.” The fundamental building blocks to this new polymer class are referred to as “dendrimers.” These dendrimers differ from classical monomers/oligomers by their extraordinary symmetry, high branching and maximized (telechelic) terminal functionality density. The dendrimers possess “reactive end groups” which allow (a) controlled moelcular weight building (monodispersity), (b) controlled branching (topology), and (c) versatility in design and modification of the terminal end groups. Dendrimer synthesis is accomplished by a variety of strategies involving “time sequenced propagation” techniques. The resulting dendrimers grow in a geometrically progressive fashion as shown: Chemically bridging these dendrimers leads to the new class of macromolecules—”starburst polymers” (e.g., (A)n, (B)n, or (C)n).

 

関連書籍

外部リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ビオチン標識 biotin label
  2. ケージド化合物 caged compound
  3. メソリティック開裂 mesolytic cleavage
  4. 薄層クロマトグラフィ / thin-layer chromato…
  5. 液体キセノン検出器
  6. フッ素のゴーシュ効果 Fluorine gauche Effec…
  7. 血液―脳関門透過抗体 BBB-penetrating Antib…
  8. GHS(化学品の分類および表示に関する世界調和システム)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 科学とは「未知への挑戦」–2019年度ロレアル-ユネスコ女性科学者日本奨励賞
  2. マット・シェア Matthew D. Shair
  3. 仕事の進め方を見直してみませんか?-SEの実例から
  4. 4歳・2歳と学会・領域会議に参加してみた ①
  5. カセロネス鉱山
  6. Reaxys体験レポート:ログイン~物質検索編
  7. 生命由来の有機分子を見分ける新手法を開発
  8. 東レ工場炎上2人重傷 名古屋
  9. 進化する高分子材料 表面・界面制御 Advanced:高分子鎖デザインがもたらすポリマーサイエンスの再創造
  10. NBSでのブロモ化に、酢酸アンモニウムをひとつまみ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2007年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

【6月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスを用いた架橋剤としての利用(溶剤系)

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/06/18 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

N-オキシドの性質と創薬における活用

N-オキシドは一部の天然物に含まれ、食品・医薬品などの代謝物にも見られるほか、医…

未来を切り拓く創薬DX:多角的な視点から探る最新トレンド

申込みはこちら次世代の創薬研究をリードするために、デジタルトランスフォーメーション(DX…

ファラデーのつくった世界!:−ロウソクの科学が歴史を変えた

こんにちは、Spectol21です!ノーベル賞受賞の吉野彰先生が、吉野先生の研究者と…

接着系材料におけるmiHub活用事例とCSサポートのご紹介

開催日:2024/06/12 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

水素原子一個で強力な触媒をケージング ――アルツハイマー病関連のアミロイドを低分子で副作用を抑えて分解する――

第 619 回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学…

ミツバチに付くダニに効く化学物質の研究開発のはなし

今回は東京大学大学院有機化学研究室 滝川 浩郷先生、小倉 由資先生が主導されている研究内容につき…

化学結合の常識が変わる可能性!形成や切断よりも「回転」プロセスが実は難しい有機反応

第 617 回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 有機…

【書評】元素楽章ー擬人化でわかる元素の世界

元素の特性に基づくキャラクターデザインとフィクションの要素を融合させ,物語にまで昇華させた,待望…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP