[スポンサーリンク]

chemglossary

デンドリマー / dendrimer

[スポンサーリンク]

 

構成ユニットを放射状に組み立てることで、球状の形をなした巨大分子を総称してデンドリマー(dendrimer)と呼びます。その名称はデンドロン(ギリシャ語で樹木の意味)に由来しています。

1985年にTomaliaらによって発表された概念です[1]。はじめは座布団型分子や提灯型分子などと同様に、構造がユニークで面白い分子として紹介されていました。その後、デンドリマー表面に官能基を簡便に密集させられるという特性が注目を浴び、機能性超分子への応用可能性にスポットが当てられるようになりました。現在では世界各国の多くの研究者が、デンドリマーを用いる研究に取り組んでいます。

日本におけるデンドリマー研究の第一人者は、東京大学の相田卓三教授です。医薬品を目的の部位へ輸送するドラッグデリバリーシステムへの応用や光捕集アンテナ機能を有するデンドリマーなどが開発されています。

デンドリマー分子の合成は、中心のコアから外側に合成するダイバージェント法と、外殻からコアに向けて合成を進めるコンバージェント法に大別されます。1段階(デンドリマーでは1世代と数えることが慣習)進むごとに官能基密集度が指数関数的増加をみせるため、傍目から見るよりその合成はかなり難しいようです。 このため、実用化にはいくつものハードルを乗り越える必要があるとされています。

 

関連文献

[1] “A New Class of Polymers: Starburst-Dendritic Macromolecules”

Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polymer J. 1985, 17, 117.

This paper describes the first synthesis of a new class of topological macromolecules which we refer to as “starburst polymers.” The fundamental building blocks to this new polymer class are referred to as “dendrimers.” These dendrimers differ from classical monomers/oligomers by their extraordinary symmetry, high branching and maximized (telechelic) terminal functionality density. The dendrimers possess “reactive end groups” which allow (a) controlled moelcular weight building (monodispersity), (b) controlled branching (topology), and (c) versatility in design and modification of the terminal end groups. Dendrimer synthesis is accomplished by a variety of strategies involving “time sequenced propagation” techniques. The resulting dendrimers grow in a geometrically progressive fashion as shown: Chemically bridging these dendrimers leads to the new class of macromolecules—”starburst polymers” (e.g., (A)n, (B)n, or (C)n).

 

関連書籍

[amazonjs asin=”B005LVQOTO” locale=”JP” title=”Dendrimers: Towards Catalytic, Material and Biomedical Uses”][amazonjs asin=”B005QBO5RM” locale=”JP” title=”Designing Dendrimers”][amazonjs asin=”1849733945″ locale=”JP” title=”Hyperbranched Polymers: Macromolecules in Between of Deterministic Linear Chains and Dendrimer Structures (Rsc Polymer Chemistry Series)”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 材料適合性 Material compatibility
  2. シトクロムP450 BM3
  3. Z-スキームモデル Z-Scheme Model
  4. エピジェネティクス epigenetics
  5. 多重薬理 Polypharmacology
  6. 非リボソームペプチド Non-Ribosomal Peptide…
  7. E値 Environmental(E)-factor
  8. GHS(化学品の分類および表示に関する世界調和システム)

注目情報

ピックアップ記事

  1. 自己治癒するセラミックス・金属ーその特性と応用|オンライン|
  2. 反応経路自動探索が見いだした新規3成分複素環構築法
  3. 環境対策と経済性を両立する電解酸化反応、創造化学が実用化実験
  4. 創造化学研究所、環境負荷の少ない実証ベンチプラント稼動へ
  5. ネイティブ・ケミカル・ライゲーション Native Chemical Ligation (NCL)
  6. マイヤース・斉藤環化 Myers-Saito Cyclization
  7. 2009年イグノーベル賞決定!
  8. ビタミンと金属錯体から合成した人工の酵素
  9. 緑色蛍光タンパク Green Fluorescent Protein (GFP)
  10. 水素移動を制御する精密な分子設計によるNHC触媒の高活性化

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2007年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP