[スポンサーリンク]

世界の化学者データベース

ナタリー カロリーナ ロゼロ ナバロ Nataly Carolina Rosero-Navarro

[スポンサーリンク]

Nataly Carolina Rosero-Navarro (コロンビア生まれ) は、スペイン在住(2022年3月まで日本在住)の化学者である。専門は無機材料化学、および有機無機ハイブリット材料化学。北海道大学助教。

経歴

2011年      University Autonoma of Madrid 博士課程修了
(Alicia Durán教授, Mario Aparicio博士)
2005-2011年 Institute of Ceramic and Glass (Spain) 研究員
2011-2012年 Institute of Materials Science of Seville (Spain) 研究員
2012-2013年 University of Aveiro (Portugal) 博士研究員
2013-2016年 北海道大学 博士研究員
2016-2022年   北海道大学 助教
2022年-       Institute of Ceramic and Glass (Spain) 研究員

研究概要

Nataly Carolina Rosero-Navarro先生は、無機材料(ガラス、結晶)、および有機-無機ハイブリッド材料の溶液合成手法を研究している。特に、環境材料やエネルギー材料としてのコーティング剤や、膜、粉末および複合材料を対象とした研究を行っている。

Carolina 先生は、これまでにゾル-ゲル法による独自の腐食抑制、生物活性および耐薬品性を備えた有機-無機ハイブリッド材料によるコーティング法や無機材料によるコーティング法を設計し[1]、環境に優しいゾル-ゲル法を用いたコーティングや多層システムに関する重要な知見を報告している。また、プロトン伝導性ハイブリット膜[2]や硫化物[3-5]および酸化物固体電解質[6]、電極/電解質界面の材料[7]、および全固体電池用の複合電極[8]を合成するための新たなソフトケミカル的合成ルートを提案し、エネルギーの生成・貯蔵のための新たな概念を生み出している。


最近では、焼結助剤を用いたゾルゲル法によって組成と微細構造を制御することで、酸化物固体電解質であるLi7La3Zr2O12を低温で焼結することに成功している[6]。また、アモルファスLi2SiO3などの薄膜層を用いることで、電極/電解質間の高い界面抵抗を大幅に削減した全固体電池の製造が可能であることを見出し[9]、リチウムイオン伝導性有機-無機ハイブリット固体電解質を界面材料とすることにより全固体電池の室温での動作が可能になることを報告している[10]

現在では、次世代の「グリーン」エネルギーの生成・貯蔵を行うための無機材料および有機-無機ハイブリッド材料の合成と設計を目指した研究を行っている。

 

受賞歴

2021年    Ulrich Award

コメント&その他

好きな食べ物:干し柿

関連文献

  1. Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024.
    N.C. Rosero-Navarro, S.A. Pellice, A. Durán, M. Aparicio.
    Corrosion Science, 50 1283–1291, 2008.
  2. Protonic conductivity and visco-elastic behaviour of Nafion® membranes with periodic mesoporous organo-silica fillers.
    N.C. Rosero-Navarro, E. M. Domingues, P. Ferreira, F. M.L. Figueiredo.
    International Journal of Hydrogen Energy, 39 (10): 5338-5349, 2014.
  3. Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery
    N.C. Rosero-Navarro, A. Miura, K. Tadanaga.
    Journal of Sol-gel Technology, 89, 303-309, 2019.
  4. Formation mechanism of thiophosphate anions in the liquid-phase synthesis of sulfide solid electrolytes using polar aprotic solvents
    M. Calpa, N.C. Rosero-Navarro, A. Miura, K. Terai, F. Utsuno, K. Tadanaga
    Chemistry of Materials, 32, 22, 9627–9632, 2020
  5. Synthesis of Sulfide Solid Electrolytes from Li2S and P2S5 in Anisole
    R. Maniwa, M. Calpa, N.C. Rosero-Navarro, A. Miura, K. Tadanaga
    Journal of Material Chemistry A, DOI: 10.1039/d0ta08658d, 2021
  6. Preparation of Li7La3(Zr2-x,Nbx)O12 (x = 0 -1.5) and Li3BO3/LiBO2 composites at low temperatures using a sol-gel process
    N.C. Rosero-Navarro, T. Yamashita, A. Miura, M. Higuchi, K. Tadanaga.
    Solid State Ionics, 285: 6–12, 2016.
  7. Significant reduction in the interfacial resistance of garnet-type solid electrolyte and lithium metal by thick lithium silicate layer
    N.C. Rosero-Navarro, R. Kajiura, R. Jalem, Y. Tateyama, A. Miura, K. Tadanaga
    ACS Applied Energy Materials 3, 6, 5533–5541, 2020
  8. Composite cathode prepared by argyrodite precursor solution assisted by dispersant agents for bulk-type all-solid-state batteries
    N.C. Rosero-Navarro, A. Miura, K. Tadanaga.
    Journal of Power Sources, 396: 33-40, 2018.
  9. Electrochemical Performance of a Garnet Solid Electrolyte based Lithium Metal Battery with Interface Modification
    G.V. Alexander, N.C. Rosero-Navarro, A. Miura, K. Tadanaga, R. Murugan.
    Journal of Material Chemistry A, 6 21018-21028, 2018.
  10. Organic–inorganic hybrid materials for interface design in all-solid-state batteries with garnet-type solid electrolyte
    N.C. Rosero-Navarro, R. Kajiura, A. Miura, K. Tadanaga
    ACS Applied Energy Materials, 3, 11, 11260-11268, 2020

関連書籍

[amazonjs asin=”4781314740″ locale=”JP” title=”ゾル-ゲル法の最新応用と展望《普及版》 (新材料・新素材シリーズ)”] [amazonjs asin=”4759810749″ locale=”JP” title=”現代無機材料科学”]

関連リンク

野口真司

投稿者の記事一覧

「国や地域を超えて格差なく化学を享受できる世界」の実現を目指す化学者。尊敬する化合物はTestosterone氏。将来の目標はJeff Seid選手になること。

関連記事

  1. マリウス・クロア G. Marius Clore
  2. アーサー・L・ホーウィッチ Arthur L. Horwich
  3. カール・ダイセロス Karl Deisseroth
  4. 森本 正和 Masakazu Morimoto
  5. ヴィクター・アンブロス Victor Ambros
  6. 中村 修二 Shuji Nakamura
  7. 福山透 Tohru Fukuyama
  8. リチャード・シュロック Richard R. Schrock

注目情報

ピックアップ記事

  1. 最新有機合成法: 設計と戦略
  2. 【書評】元素楽章ー擬人化でわかる元素の世界
  3. 工業生産モデルとなるフロー光オン・デマンド合成システムの開発に成功!:クロロホルムを”C1原料”として化学品を連続合成
  4. 有機合成化学協会誌7月号:ランドリン全合成・分子間interrupted Pummerer反応・高共役拡張ポルフィリノイド・イナミド・含フッ素ビニルスルホニウム塩・ベンゾクロメン
  5. 捏造のロジック 文部科学省研究公正局・二神冴希
  6. ポンコツ博士の海外奮闘録XXI ~博士,反応を処理する~
  7. 未来社会創造事業
  8. エッシェンモーザー・タナベ開裂反応 Eschenmoser-Tanabe Fragmentation
  9. Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎や機械学習との違いを解説-
  10. 旭化成 繊維事業がようやく底入れ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年3月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP