[スポンサーリンク]

世界の化学者データベース

ナタリー カロリーナ ロゼロ ナバロ Nataly Carolina Rosero-Navarro

[スポンサーリンク]

Nataly Carolina Rosero-Navarro (コロンビア生まれ) は、スペイン在住(2022年3月まで日本在住)の化学者である。専門は無機材料化学、および有機無機ハイブリット材料化学。北海道大学助教。

経歴

2011年      University Autonoma of Madrid 博士課程修了
(Alicia Durán教授, Mario Aparicio博士)
2005-2011年 Institute of Ceramic and Glass (Spain) 研究員
2011-2012年 Institute of Materials Science of Seville (Spain) 研究員
2012-2013年 University of Aveiro (Portugal) 博士研究員
2013-2016年 北海道大学 博士研究員
2016-2022年   北海道大学 助教
2022年-       Institute of Ceramic and Glass (Spain) 研究員

研究概要

Nataly Carolina Rosero-Navarro先生は、無機材料(ガラス、結晶)、および有機-無機ハイブリッド材料の溶液合成手法を研究している。特に、環境材料やエネルギー材料としてのコーティング剤や、膜、粉末および複合材料を対象とした研究を行っている。

Carolina 先生は、これまでにゾル-ゲル法による独自の腐食抑制、生物活性および耐薬品性を備えた有機-無機ハイブリッド材料によるコーティング法や無機材料によるコーティング法を設計し[1]、環境に優しいゾル-ゲル法を用いたコーティングや多層システムに関する重要な知見を報告している。また、プロトン伝導性ハイブリット膜[2]や硫化物[3-5]および酸化物固体電解質[6]、電極/電解質界面の材料[7]、および全固体電池用の複合電極[8]を合成するための新たなソフトケミカル的合成ルートを提案し、エネルギーの生成・貯蔵のための新たな概念を生み出している。


最近では、焼結助剤を用いたゾルゲル法によって組成と微細構造を制御することで、酸化物固体電解質であるLi7La3Zr2O12を低温で焼結することに成功している[6]。また、アモルファスLi2SiO3などの薄膜層を用いることで、電極/電解質間の高い界面抵抗を大幅に削減した全固体電池の製造が可能であることを見出し[9]、リチウムイオン伝導性有機-無機ハイブリット固体電解質を界面材料とすることにより全固体電池の室温での動作が可能になることを報告している[10]

現在では、次世代の「グリーン」エネルギーの生成・貯蔵を行うための無機材料および有機-無機ハイブリッド材料の合成と設計を目指した研究を行っている。

 

受賞歴

2021年    Ulrich Award

コメント&その他

好きな食べ物:干し柿

関連文献

  1. Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024.
    N.C. Rosero-Navarro, S.A. Pellice, A. Durán, M. Aparicio.
    Corrosion Science, 50 1283–1291, 2008.
  2. Protonic conductivity and visco-elastic behaviour of Nafion® membranes with periodic mesoporous organo-silica fillers.
    N.C. Rosero-Navarro, E. M. Domingues, P. Ferreira, F. M.L. Figueiredo.
    International Journal of Hydrogen Energy, 39 (10): 5338-5349, 2014.
  3. Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery
    N.C. Rosero-Navarro, A. Miura, K. Tadanaga.
    Journal of Sol-gel Technology, 89, 303-309, 2019.
  4. Formation mechanism of thiophosphate anions in the liquid-phase synthesis of sulfide solid electrolytes using polar aprotic solvents
    M. Calpa, N.C. Rosero-Navarro, A. Miura, K. Terai, F. Utsuno, K. Tadanaga
    Chemistry of Materials, 32, 22, 9627–9632, 2020
  5. Synthesis of Sulfide Solid Electrolytes from Li2S and P2S5 in Anisole
    R. Maniwa, M. Calpa, N.C. Rosero-Navarro, A. Miura, K. Tadanaga
    Journal of Material Chemistry A, DOI: 10.1039/d0ta08658d, 2021
  6. Preparation of Li7La3(Zr2-x,Nbx)O12 (x = 0 -1.5) and Li3BO3/LiBO2 composites at low temperatures using a sol-gel process
    N.C. Rosero-Navarro, T. Yamashita, A. Miura, M. Higuchi, K. Tadanaga.
    Solid State Ionics, 285: 6–12, 2016.
  7. Significant reduction in the interfacial resistance of garnet-type solid electrolyte and lithium metal by thick lithium silicate layer
    N.C. Rosero-Navarro, R. Kajiura, R. Jalem, Y. Tateyama, A. Miura, K. Tadanaga
    ACS Applied Energy Materials 3, 6, 5533–5541, 2020
  8. Composite cathode prepared by argyrodite precursor solution assisted by dispersant agents for bulk-type all-solid-state batteries
    N.C. Rosero-Navarro, A. Miura, K. Tadanaga.
    Journal of Power Sources, 396: 33-40, 2018.
  9. Electrochemical Performance of a Garnet Solid Electrolyte based Lithium Metal Battery with Interface Modification
    G.V. Alexander, N.C. Rosero-Navarro, A. Miura, K. Tadanaga, R. Murugan.
    Journal of Material Chemistry A, 6 21018-21028, 2018.
  10. Organic–inorganic hybrid materials for interface design in all-solid-state batteries with garnet-type solid electrolyte
    N.C. Rosero-Navarro, R. Kajiura, A. Miura, K. Tadanaga
    ACS Applied Energy Materials, 3, 11, 11260-11268, 2020

関連書籍

[amazonjs asin=”4781314740″ locale=”JP” title=”ゾル-ゲル法の最新応用と展望《普及版》 (新材料・新素材シリーズ)”] [amazonjs asin=”4759810749″ locale=”JP” title=”現代無機材料科学”]

関連リンク

野口真司

投稿者の記事一覧

「国や地域を超えて格差なく化学を享受できる世界」の実現を目指す化学者。尊敬する化合物はTestosterone氏。将来の目標はJeff Seid選手になること。

関連記事

  1. 森謙治 Kenji Mori
  2. 千田憲孝 Noritaka Chida
  3. 松村 保広 Yasuhiro Matsumura
  4. マイケル・オキーフィ Michael O’Keeff…
  5. アメリ化学会創造的有機合成化学賞・受賞者一覧
  6. 伊丹健一郎 Kenichiro Itami
  7. エリック・カレイラ Erick M. Carreira
  8. 塩谷光彦 Mitsuhiko Shionoya

注目情報

ピックアップ記事

  1. 化学系ブログのランキングチャート
  2. マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門 -デモンストレーションで解説-
  3. 予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る
  4. ソモライ教授2008年プリーストリー賞受賞
  5. 十全化学株式会社ってどんな会社?
  6. 未来の製薬を支える技術 – Biotage®金属スカベンジャーツールキット
  7. 第175回―「酸素を活用できる新規酸化触媒系の開発」Mark Muldoon准教授
  8. 榊原康文 Yasubumi SAKAKIBARA
  9. 【技術者・事業担当者向け】 マイクロ波による化学プロセス革新 〜マイクロ波が得意とするプロセスはコレだ!〜
  10. ラッセル・コックス Rusesl J. Cox

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年3月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP