[スポンサーリンク]

身のまわりの分子

フッ素ドープ酸化スズ (FTO)

酸化インジウムスズ(ITO)と同様に透明導電膜として有名な材料であるフッ素ドープ酸化スズ(FTO)。2つの材料の違いとは?

 

応用例

フッ素ドープ酸化スズ(F-doped Tin Oxide, FTO)とは、酸化スズにフッ素をドープした材料で、主に色素増感型太陽電池ペロブスカイト太陽電池の透明電極に使われています。

 

FTOは大気下気相化学成長(Chemical Vapor Deposition: CVD)法や、スプレー熱分解(Spray Pyrolysis Deposition: SPD)法などを用いてガラス上に成膜します。

 

特長としてITOと同様薄膜にしたときに高い透明性と電気伝導度を示します。

ITOには希少金属であるインジウムが使われていますが、FTOにはそれが使われていないため希少金属の資源保護の観点から利用価値が高まっています。

 

ITOとFTOの違い

ITOとFTOの違いを表にまとめてみました。

 

  ITO FTO
耐熱性 あまりない 十分ある
電気伝導度 (比抵抗値: Ωcm)[1] 1.8 x 10-4 8.5 x 10-4
透明性(全光線透過率)[1] 96% 87%
表面状態 平滑 微細な凹凸

 

ITOとの大きな違いはその耐熱性です。ITOは300℃以上の焼結を行うと電気伝導度 (比抵抗率)が高くなってしまい透明導電膜としての性能がさがってしまいますが、FTOにはそのようなことはありません。

そのため、色素増感型太陽電池やペロブスカイト太陽電池の電子輸送層や多孔質層に用いられる酸化チタン(TiO2)の焼結に必要な温度である500℃に耐えられるためよく用いられているというわけです。

 

一方、FTOは元々の電気伝導度が高いため、その分FTOの層を厚くする必要があります。そのためITOと比べると透明性が低下するといった問題点があります。

また、FTOには表面に微細な凹凸があるため、入射した光が基板の中に閉じ込められてしまいます。そのため光を基板内から取り出す必要のある液晶ディスプレイや有機ELには不向きといった問題があります。

最後に

ITOに変わる透明導電膜として注目されているFTO。レアメタルであるインジウムを使わない、耐熱性があるといったメリットがある一方、デメリットも多くまだまだ改善の必要があるのも事実です。

加えてFTOもフレキシブル素材には使いにくいといった欠点もあります。

FTOやITOといった材料がどうなるのか。今後の研究に期待しましょう。

 

参考文献

[1] 川島卓也, 後藤謙次, 小林一治, 「 高性能FTO基板」フジクラ技報, 110, 32-36, 2006

 

関連書籍

 

 

 

The following two tabs change content below.
レオ

レオ

Ph.D取得を目指す大学院生。有機太陽電池の高効率を目指して日々研究中。趣味は一人で目的もなく電車に乗って旅行をすること。最近は研究以外の分野にも興味を持ち日々勉強中。
レオ

最新記事 by レオ (全て見る)

関連記事

  1. フタロシアニン phthalocyanine
  2. ジブロモインジゴ dibromoindigo
  3. コエンザイムQ10 /coenzyme Q10
  4. ブレオマイシン /Bleomycin
  5. アスタキサンチン (astaxanthin)
  6. ノルゾアンタミン /Norzoanthamine
  7. 過塩素酸カリウム (potassium perchlorate)…
  8. ペンタシクロアナモキシ酸 pentacycloanamoxic…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ナノチューブを大量生産、産業技術総合研が技術開発
  2. バイオマス燃料・化学品の合成と触媒の技術動向【終了】
  3. 階段状分子の作り方
  4. 化学者ネットワーク
  5. 集光型太陽光発電システムの市場動向・技術動向【終了】
  6. スタニルリチウム調製の新手法
  7. 学振申請書を磨き上げるポイント ~自己評価欄 編(後編)~
  8. クライゼン縮合 Claisen Condensation
  9. 2009年イグノーベル賞決定!
  10. ジピバロイルメタン:Dipivaloylmethane

関連商品

注目情報

注目情報

最新記事

NMRの基礎知識【測定・解析編】

本シリーズでは、NMRの原理から実例までをできるだけ分かりやすくご紹介したいと思います。前回の【原理…

「人工知能時代」と人間の仕事

デジタル技術の進歩は著しく、特に、人工知能(AI)と呼ばれる機械学習システムの進歩は、世界の労働者の…

特定の刺激でタンパク質放出速度を制御できるスマート超分子ヒドロゲルの開発

第134回のスポットライトリサーチは、京都大学大学院 工学研究科 合成·生物化学専攻 浜地研究室の重…

有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成

有機合成化学協会が発行する有機合成化学協会誌、2018年1月号が昨日オンライン公開されました。…

アミン化合物をワンポットで簡便に合成 -新規還元的アミノ化触媒-:関東化学

アミン化合物は医薬品、農薬などの生理活性物質をはじめ、ポリマーなどの工業材料に至るまで様々な化学物質…

独自の有機不斉触媒反応を用いた (—)-himalensine Aの全合成

近年単離されたアルカロイド(—)-himalensine Aの全合成に初めて成功した。独自開発した二…

Chem-Station Twitter

PAGE TOP