[スポンサーリンク]

身のまわりの分子

尿酸 Uric Acid 〜痛風リスクと抗酸化作用のジレンマ〜

[スポンサーリンク]

 

皆さん、尿酸値は気にしてますか? ご存知の通り、ビールやお肉に豊富に含まれるプリン体の過剰摂取は高尿酸血症を引き起こし、ひいてはコワ〜イ痛風の原因となります。痛風発作の激痛は想像を絶するほどと言われており、罹りたくない病気の一つです。一方で、尿酸実は体に良い化合物でもあるかもしれないのです。本記事では、そんな尿酸の功罪について紹介します。

死に至ることもある痛風の恐怖

尿酸 (uric acid) はその名の通り尿中から発見された有機化合物で、ヒトにおけるプリン (核酸塩基の一つ) 代謝の最終産物に当たります。プリン塩基  (アデニン・グアニン) はキサンチンデヒドロゲナーゼ/オキシダーゼによってヒポキサンチン→キサンチン→尿酸と酸化代謝を受けて排泄されます (図 1) 。段階的に酸素原子が導入されていることが分かると思います。

図 1  プリン塩基の代謝

では、尿酸による痛風はなぜ起こるのでしょうか。それには尿酸の物理的性質が大きく関与しています。この最終産物である尿酸のナトリウム塩の血漿中における溶解度は 7.0 mg/dL=約400 μM であり、医薬品等に比べればかなりの高濃度まで溶解します。しかし、ヒトの正常な尿酸値は 2~7 mg/dL にも達し、ほぼ飽和濃度近くまで存在しています。これを超えてしまった場合、尿酸ナトリウムは結晶として析出する場合が多くなります。特に、体温の低い足の拇指関節などでは結晶の析出が起こりやすくなります。痛風発作の好発部位として足の親指の関節が挙げられるのはこのことが原因の一つです。

近年、尿酸の結晶は DAMPs (damage-associated molecular patterns) の一種に分類され、細胞内ストレスを反映する因子としての認識がされるようになってきました。つまり高尿酸血症は痛風だけでなく、高血圧動脈硬化といったさまざまな生活習慣病のリスクファクターであると考えられています。
高尿酸血症で特に怖いのは、「痛風腎」と呼ばれる腎臓での尿酸結晶による炎症反応で、腎不全による透析治療や、ひいては死の原因ともなります。

痛風は、アレキサンダー大王・ルイ14世・ナポレオン・レオナルドダビンチなど、数多くの偉人もその痛みに苦しめられたとされており、かつては帝王病・贅沢病などとも呼ばれていました。一般市民がプリン体に飛んだ食事を頻繁に摂取するようになったのは歴史的に見ればごくごく最近のことで、痛風は他の生活習慣病と同様に元来稀な疾患であったと考えられます。実は、哺乳類のうち核酸塩基を尿酸の形で排泄するのは、ヒトをはじめとする高等霊長類に限られています。他の哺乳類は尿酸をさらに単純な構造にして排泄するための酵素が備わっていおり (図2)、ヒトは進化の過程で尿酸代謝酵素を失った動物と言われています。その理由については諸説ありますが、一説には尿酸の抗酸化作用が要因ではないかとされています。

尿酸は体内最強の抗酸化剤

尿酸は非常に強力な抗酸化作用を持っています。 生体は酸素 O2 をエネルギー獲得に利用する半面で、常に活性酸素種 (ROS) による酸化ストレスの脅威に晒されています。生体内で発生する ROS には、空気中に存在する三重項酸素 3O2 が段階的に一電子還元されて生じる、スーパーオキシドアニオンラジカル (O2•)過酸化水素 (H2O2)ヒドロキシルラジカル (•OH) と、3O2 よりも高いエネルギー状態にある分子状酸素の一重項酸素 1O2、またスーパーオキシドと一酸化窒素 (NO•) の反応生成物であるパーオキシナイトライト (ONOO) などが挙げられます。これらのうち、尿酸はヒドロキシルラジカル、一重項酸素およびパーオキシナイトライトといった、特に反応性の高い ROS を消去します。また活性酸素種から生成する脂質フリーラジカルや脂質ペルオキシラジカルも効率的に消去できることが知られています。

図2 活性酸素の生成経路

これは筆者の実験結果になりますが、活性酸素種・フリーラジカルのモデル化合物である DPPH (安定フリーラジカル) を用いて各種プリン塩基との反応性を評価したところ、尿酸の前駆物質であるヒポキサンチンやキサンチンはまったく DPPH と反応しなかったのに対し、尿酸は103  M-1•s-1 程度の速度で DPPH と反応しました。そして、尿酸の異化代謝物であるアラントインは、これまた DPPH と反応しませんでした。この結果は尿酸が特別な内因性抗酸化物質であることを示唆しています

天然の抗酸化剤として著名なものにアスコルビン酸 (ビタミンC) があります。マウスなどの哺乳類はビタミンCを体内で生合成できるのですが、ヒトはそのビタミンC合成酵素を欠いています。ビタミンC合成酵素の欠損は、尿酸を抗酸化剤として活用するようになった代償であるとの考え方もあります。また、霊長類の種ごとの血清尿酸値と寿命には正の相関があるとの報告もされています。尿酸がヒトの体内における最強の抗酸化剤 (何を持って最強とするかは諸説ありますが) とする説は酸化ストレス研究界隈では定説となりつつあるようです。

尿酸値とパーキンソン病・神経変性疾患

1994年、Church らは、パーキンソン病患者の病変部位である中脳黒質では、組織中の尿酸濃度が低くなっていることを明らかにしました (参考文献)。その後多くの臨床研究が各地で実施され、パーキンソン病患者の血清尿酸値は健常者と比べて低いと結論づけるメタアナリシスがいくつかまとめられています。パーキンソン病の発症・増悪原因は未詳ではありますが、酸化ストレスが関与するという仮説は根強くあります。血清尿酸値が低いと抗酸化力も低くなり、そのためにパーキンソン病を発症しやすくなるとする仮説はあまりに単純かもしれませんが、その可能性も否定できないのが現状です。裏を返せば、尿酸値の高い人はパーキンソン病の罹患率が低下するとも考えられますが、その仮説検証には相当な大規模スタディが必要となり、難しいのではないかと思われます。ちなみに進行したパーキンソン病患者の血清尿酸値を人為的に上げても治療効果は見られなかったようです。

その他、患者の血清尿酸値の低下が認められている神経変性疾患として筋萎縮性側索硬化症 (ALS) とハンチントン病が報告されています。これらの疾患に関してはパーキンソン病ほどのエビデンスは集まっていませんが、酸化ストレスと密接に関与する疾患のため関連があってもおかしくはありません。ただこれらもパーキンソン病と同様、進行後に尿酸値を上げる介入をしても治療効果は得られない可能性が高いと思います。あくまでも尿酸の抗酸化作用は発症の予防的に働く、と考え、過度な期待はせずむしろ痛風の予防に努める方が健康上の有益性は高いのではないでしょうか。

関連書籍

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. ニトログリセリン / nitroglycerin
  2. アピオース apiose
  3. スピノシン Spinosyn
  4. アデノシン /adenosine
  5. マツタケオール mushroom alcohol
  6. フェノールフタレイン ふぇのーるふたれいん phenolphth…
  7. A-ファクター A-factor
  8. ノルゾアンタミン /Norzoanthamine

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2011年人気記事ランキング
  2. テトラサイクリン類の全合成
  3. 初めてTOEICを受験してみた~学部生の挑戦記録~
  4. 窒素を挿入してペリレンビスイミドを曲げる〜曲面π共役分子の新設計指針の確立を目指して〜
  5. 第五回ケムステVシンポジウム「最先端ケムバイオ」開催報告
  6. Wen-Jing Xiao
  7. エチオ・リザード Ezio Rizzardo
  8. 嗚呼、美しい高分子の世界
  9. ゾウががんになりにくい本当の理由
  10. 第二回ケムステVシンポジウム「光化学へようこそ!~ 分子と光が織りなす機能性材料の新展開 ~」を開催します!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

注目情報

最新記事

【速報】2022年ノーベル化学賞は「クリックケミストリーと生体直交化学」へ!

2022年のノーベル化学賞は「クリックケミストリーと生体直交化学」の開発業績で、バリー・シャープレス…

in-situ放射光X線小角散実験から明らかにする牛乳のナノサイエンス

第425回のスポットライトリサーチは、高エネルギー加速器研究機構 物質構造科学研究所(物構研)の高木…

アセトアミノフェン Acetaminophen

 アセトアミノフェン (acetaminophen) は、有機化合物の一つ。海外ではパラセタ…

不安定な高分子原料を従来に比べて 50 倍安定化することに成功! ~水中での化学反応・材料合成に利用可能、有機溶媒の大幅削減による脱炭素に貢献~

第424回のスポットライトリサーチは、京都工芸繊維大学大学院工芸科学研究科 バイオベースマテリアル学…

【10月開催】マイクロ波化学ウェブセミナー

<内容>今月もテーマを分けて2回開催いたします。第一…

越野 広雪 Hiroyuki Koshino

越野 広雪(こしの ひろゆき)は、NMRやマススペクトルなどのもとにした有機分子の構造解析を専門とす…

bassler ボニー・L.・バスラー Bonnie L. Bassler

ボニー・L.・バスラー (Bonnie Lynn Bassler , 1962年XX月XX日-)は、…

電子を閉じ込める箱: 全フッ素化キュバンの合成

第 423 回のスポットライトリサーチは、東京大学 工学系研究科 化学生命工学専…

プラズモンTLC:光の力でナノ粒子を自在に選別できる新原理クロマトグラフィー

第422回のスポットライトリサーチは、名古屋大学 大学院工学研究科 鳥本研究室の秋吉 一孝 (あきよ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2022/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP