[スポンサーリンク]

天然物

モリブドプテリン (molybdopterin)

[スポンサーリンク]

GREENm0010.PNG

モリブドプテリンは、細菌のなかまから、動物や植物まで、ほぼすべての生き物で共通して見られる生体分子。モリブデンが配位した、モリブデン補因子は、ビタミンのように酵素タンパク質の機能を補助する役割があります。

 

ヒトでも植物でも取りこまれたモリブデンは、モリブドプテリンに挿入され、モリブデン補因子のかたちとなったのち、酵素の機能を助けます。必要な摂取量は少なく、めったに欠乏症が出ることはありません。

モリブドプテリンの生合成は、いくつか特徴あるステップを経ます。まず最初[2]は、グアノシン三リン酸から環状ピラノプテリンモノリン酸への変換です。窒素原子と炭素原子の間で共有結合を形成しながら進む分子内環化反応が起きます。そして最後[1]は、モリブドプテリンへのモリブデン原子の挿入です。銅原子が挿入されているところへ置き換わるかたちでモリブデンが組み込まれます。

GREEN2013mocomovie.gif

モリブデン生合成中間体

(GIFアニメーション動作確認: Internet Explorer, Google Chrome)

 

  • モリブドプテリンが必要な酵素の例

モリブデドプテリンにモリブデンが結合したモリブデン補因子を必要とする酵素はいくつかあります。これらはみな酸化還元酵素であるという共通点があります。生化学上、重要なふたつを具体例として紹介します。ここに詳しく解説したものだけではなく、例えばギ酸酸化酵素・亜硫酸酸化酵素・アブシジン酸アルデヒド酸化酵素・エチルベンゼン還元酵素なども、モリブデン補因子を必要とする酵素です。

 

1.硝酸還元酵素(nitrate reductase)

硝酸還元酵素は、土壌で育つ植物の生長を理解する上で、重要な構成員のひとつです。通常、硝酸還元酵素は亜硝酸硝酸に変換する酵素です。試験管内で条件を整えれば硝酸を亜硝酸に変換することもできます。

土壌中の窒素分はアンモニウムイオン・亜硝酸イオン・硝酸イオンなどのかたちで存在します。しかし、多くの植物は、根から吸収するために、硝酸イオンのかたちでないと苦手です。土壌中の細菌には、アンモニウムイオンを亜硝酸イオンに変えるものと、亜硝酸イオンを硝酸イオンに変えるものがいます。亜硝酸イオンを硝酸イオンに変える菌は硝酸還元酵素を持っています。

根から硝酸イオンのかたちで窒素分を取り込んだ後、植物はアミノ酸など他の化合物に代謝しなければなりません。このとき、アンモニウムイオンのかたちでないと、植物は上手く使いこなせません。そのため、植物も硝酸還元酵素を持っており、硝酸イオンを亜硝酸イオンに変えることができます。亜硝酸イオンは別の酵素によって直ちにアンモニウムイオンに変換されます。

わたしたちヒトは、植物が土壌から吸収してアミノ酸に変えてくれたものを、食べものとして摂取しています。考え直して、起源を土壌に生える植物までたどってみると、確かにモリブドプテリンなしではわたしたちの生活は成り立ちません。

 

2.キサンチン酸化酵素(xanthine oxidase)

キサンチン酸化酵素は、ヒトが健康な暮らしを続ける方法を理解する上で、重要な構成員のひとつです。この酵素は、痛風の原因になる尿酸を作る酵素です。

キサンチン酸化酵素は本来ヌクレオチド代謝を仲立ちする重要な酵素です。しかし、尿酸が作られすぎてしまうと、組織で結晶化して痛風を引き起こします。痛風は、イノシン酸アデニル酸グアニル酸など、尿酸の原料となるプリン体を、食事で過剰に摂取していると、発症しやすくなります。なんでもバランスが大切です。

この酵素の機能を抑制して体の調子を整える医薬品として、アロプリノールや、2011年1月に新しく日本でも承認されたフェブキソスタットなどが知られています。

 

  • 参考論文

[1] “Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism” Jochen Kuper et al. Nature 2004 DOI: 10.1038/nature02681

[2]"Identification of a Cyclic Nucleotide as a Cryptic Intermediate in Molybdenum Cofactor Biosynthesis." Hover et al. J. Am. Chem. Soc. 2013 DOI: 10.1021/ja401781t

 

  • 関連書籍

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. ギンコライド ginkgolide
  2. ムスカリン muscarine
  3. アブシジン酸(abscisic acid; ABA)
  4. タミフル(オセルタミビル) tamiflu (oseltamiv…
  5. ヘキサニトロヘキサアザイソウルチタン / Hexanitrohe…
  6. メントール /menthol
  7. シラフルオフェン (silafluofen)
  8. プロリン ぷろりん proline

注目情報

ピックアップ記事

  1. アンモニアの安全性あれこれ
  2. ボーディペプチド合成 Bode Peptide Synthesis
  3. 合成化学者十訓
  4. NMR Chemical Shifts ー溶媒のNMR論文より
  5. トーンカーブをいじって画像加工を見破ろう
  6. 理化学研究所上級研究員(創発デバイス研究チーム)募集
  7. 理研の一般公開に参加してみた
  8. 第七回 生命を化学する-非ワトソン・クリックの世界を覗く! ー杉本直己教授
  9. サーバーを移転しました
  10. エレクトライド:大量生産に道--セメント原料から次世代ディスプレーの材料

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP