[スポンサーリンク]

天然物

モリブドプテリン (molybdopterin)

[スポンサーリンク]

GREENm0010.PNG

モリブドプテリンは、細菌のなかまから、動物や植物まで、ほぼすべての生き物で共通して見られる生体分子。モリブデンが配位した、モリブデン補因子は、ビタミンのように酵素タンパク質の機能を補助する役割があります。

 

ヒトでも植物でも取りこまれたモリブデンは、モリブドプテリンに挿入され、モリブデン補因子のかたちとなったのち、酵素の機能を助けます。必要な摂取量は少なく、めったに欠乏症が出ることはありません。

モリブドプテリンの生合成は、いくつか特徴あるステップを経ます。まず最初[2]は、グアノシン三リン酸から環状ピラノプテリンモノリン酸への変換です。窒素原子と炭素原子の間で共有結合を形成しながら進む分子内環化反応が起きます。そして最後[1]は、モリブドプテリンへのモリブデン原子の挿入です。銅原子が挿入されているところへ置き換わるかたちでモリブデンが組み込まれます。

GREEN2013mocomovie.gif

モリブデン生合成中間体

(GIFアニメーション動作確認: Internet Explorer, Google Chrome)

 

  • モリブドプテリンが必要な酵素の例

モリブデドプテリンにモリブデンが結合したモリブデン補因子を必要とする酵素はいくつかあります。これらはみな酸化還元酵素であるという共通点があります。生化学上、重要なふたつを具体例として紹介します。ここに詳しく解説したものだけではなく、例えばギ酸酸化酵素・亜硫酸酸化酵素・アブシジン酸アルデヒド酸化酵素・エチルベンゼン還元酵素なども、モリブデン補因子を必要とする酵素です。

 

1.硝酸還元酵素(nitrate reductase)

硝酸還元酵素は、土壌で育つ植物の生長を理解する上で、重要な構成員のひとつです。通常、硝酸還元酵素は亜硝酸硝酸に変換する酵素です。試験管内で条件を整えれば硝酸を亜硝酸に変換することもできます。

土壌中の窒素分はアンモニウムイオン・亜硝酸イオン・硝酸イオンなどのかたちで存在します。しかし、多くの植物は、根から吸収するために、硝酸イオンのかたちでないと苦手です。土壌中の細菌には、アンモニウムイオンを亜硝酸イオンに変えるものと、亜硝酸イオンを硝酸イオンに変えるものがいます。亜硝酸イオンを硝酸イオンに変える菌は硝酸還元酵素を持っています。

根から硝酸イオンのかたちで窒素分を取り込んだ後、植物はアミノ酸など他の化合物に代謝しなければなりません。このとき、アンモニウムイオンのかたちでないと、植物は上手く使いこなせません。そのため、植物も硝酸還元酵素を持っており、硝酸イオンを亜硝酸イオンに変えることができます。亜硝酸イオンは別の酵素によって直ちにアンモニウムイオンに変換されます。

わたしたちヒトは、植物が土壌から吸収してアミノ酸に変えてくれたものを、食べものとして摂取しています。考え直して、起源を土壌に生える植物までたどってみると、確かにモリブドプテリンなしではわたしたちの生活は成り立ちません。

 

2.キサンチン酸化酵素(xanthine oxidase)

キサンチン酸化酵素は、ヒトが健康な暮らしを続ける方法を理解する上で、重要な構成員のひとつです。この酵素は、痛風の原因になる尿酸を作る酵素です。

キサンチン酸化酵素は本来ヌクレオチド代謝を仲立ちする重要な酵素です。しかし、尿酸が作られすぎてしまうと、組織で結晶化して痛風を引き起こします。痛風は、イノシン酸アデニル酸グアニル酸など、尿酸の原料となるプリン体を、食事で過剰に摂取していると、発症しやすくなります。なんでもバランスが大切です。

この酵素の機能を抑制して体の調子を整える医薬品として、アロプリノールや、2011年1月に新しく日本でも承認されたフェブキソスタットなどが知られています。

 

  • 参考論文

[1] “Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism” Jochen Kuper et al. Nature 2004 DOI: 10.1038/nature02681

[2]"Identification of a Cyclic Nucleotide as a Cryptic Intermediate in Molybdenum Cofactor Biosynthesis." Hover et al. J. Am. Chem. Soc. 2013 DOI: 10.1021/ja401781t

 

  • 関連書籍

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. ゲオスミン(geosmin)
  2. スピノシン spinosyn
  3. アザジラクチン あざじらくちん azadirachtin
  4. 酢酸ビニル (vinyl acetate)
  5. ディスコデルモライド /Discodermolide
  6. シラフィン silaffin
  7. 二フッ化酸素 (oxygen difluoride)
  8. トリメチルアルミニウム trimethylalminum

注目情報

ピックアップ記事

  1. 木曽 良明 Yoshiaki Kiso
  2. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)
  3. 連続アズレン含有グラフェンナノリボンの精密合成
  4. Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow
  5. 第100回―「超分子包接による化学センシング」Yun-Bao Jiang教授
  6. 九大発、化学アウトリーチのクラウドファンディング「光化学の面白さを中高生と共有したい!化学の未来をピカリと照らす!」
  7. 有機反応を俯瞰する ー付加脱離
  8. アズワンが第一回ケムステVプレミアレクチャーに協賛しました
  9. カンブリア爆発の謎に新展開
  10. 掟破り酵素の仕組みを解く

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

【27卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

熱がダメなら光当てれば?Lugdunomycinの全合成

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベ…

第59回有機反応若手の会

開催概要有機反応若手の会は、全国の有機化学を研究する大学院生を中心とした若手研究…

多環式分子を一挙に合成!新たなo-キノジメタン生成法の開発

第661回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)博士課程1…

可視光でスイッチON!C(sp3)–Hにヨウ素をシャトル!

不活性なC(sp3)–H結合のヨウ素化反応が報告された。シャトル触媒と光励起Pdの概念を融合させ、ヨ…

化学研究者がAIを味方につける時代―専門性を武器にキャリアを広げる方法―

化学の専門性を活かしながら、これからの時代に求められるスキルを身につけたい——。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP