[スポンサーリンク]

化学者のつぶやき

もっと化学に光を! 今さらですが今年は光のアニバーサリーイヤー

[スポンサーリンク]

今週はノーベル賞の発表が控えており、今からワクワクが止まりませんね。

それはそれで置いておきまして、突然ですが今年は何の年だかご存知でしょうか?ベンゼンの構造から150年というのは以前ご紹介しましたが、国際連合で宣言された正式な(?)記念の年があります。ご存知の方も多いかと思いますが、今年は

「光と光技術の国際年(International Year of Light and Light-based Technologies, IYL-2015)」

なのです。どちらかと言うと化学というより物理の分野の方が馴染み深いのかもしれませんが、化学だって光は大いに関係がありますよね。今更感がありますが、国際光年とはなんぞやとともに、化学と光について少し振り返ってみたいと思います。

 

 

なぜ今年が光と光技術の国際年(以下国際光年)なのかといいますと、今年はイブン・アル・ハイサムの光学研究からなんと1000 年にあたるというのです。

light_3

アル・ハイサムはイラクの紙幣にも登場

アル・ハイサムは、現在のイラクに生まれた世界最初の科学者とも言える人物で、数多くの実験を行い、その結果から帰納法的な推論により数々の理論を打ち立てたことで知られています。特に光学の分野に大きな貢献をしており、近代光学の父とも言われています。

例えば、屈折と光の入射角の比率は一定ではないという重要な発見をしており、レンズがものを拡大して見せる仕組み、屈折に関する法則を発見しました。その他にも光を構成する色を分解する最初の実験、日没の際の日光の色、日の出、日没時に太陽がなぜ大きく見えるのかについての説明を与えています。物理学分野のみならず、解剖学、数学にも足跡を残しており、彼の著「Kitab al-Manazir」(光学の書)のラテン語訳は西洋科学に大きな影響を与えました。この書が書かれたのが1015年頃であり、今年が1000年目ということです。

 

またアインシュタインの一般相対性理論から100年という節目でもあります。1905年の特殊相対論の発表に続き、1911年には「光の伝播に対する重力の影響」、1914年「一般相対性理論および重力論の草案」、そして1915年 「水星の近日点の移動に対する一般相対性理論による説明」と光に関係が深い理論が相次いで発表されました。

さらに1965年、チャールズ・K・カオは、ガラスの不純物濃度を下げることで光の損失を低減可能であることから、損失率が20dB/kmの材料を用いれば通信用の光ファイバーとして利用できることを提唱しました。これを受けて、ガラスファイバーの不純物を下げる実用的な研究が活発に行われた結果、光ファイバーは実用化に向けて大きく前進しました。カオは、「光通信用の光ファイバーに対する先駆的な貢献」により、2009年にノーベル物理学賞を受賞しました。

 

以上のように2015 年は光にとって節目となる重要な年であると言えます。そこで、国際連合(UN)総会第68会期において、2015 年を「光と光技術の国際年」とするにいたり、その推進にはユネスコ(国際連合教育科学文化機関)が関わることとなりました。我が国においても、日本学術会議を中心として、各種シンポジウムやイベントが実施されています。

 

光と言えばどちらかというと物理学の方が馴染み深いかと思います。ノーベル物理学賞の5つに1つは光に関するものであることからも明らかです。しかし、化学者にとっても光は重要な役割を果たしてくれています。

まず、人工的な光がなければ夜遅くまで実験できません。それは冗談としても電灯が無かった時代に夜を照らしていたロウソクは天然の脂肪から作られていましたが、George Wilsonにより、より明るく、より煙の少ないロウソクを作る試みが契機となり、その後の石油のクラッキング、すなわち石油化学に発展していきました。

 

そもそも光を表現する際の光子という用語も物理化学者のGilbert Lewisが1926年にNature誌で使用したのが始まりです(生物学者はある種の現象に同じphotonという用語を用いていたことがある)[1]。

light_1ブンゼンの分光器(画像は文献より引用)

化合物の構造決定には分光学的手法は欠かせません。いわゆるブンゼンバーナーを利用して、1859年にRobert BunsenとGustav Kirchhoffは最初の分光器を開発しました。分光器を使って、50年前にJosef von Fraunhoferによって太陽光から観測されていた原子スペクトルが特定されることになります。さらに、原子スペクトルで現れるスペクトル線の色から、ラテン語で 「青= caesius」に由来するセシウム、「赤=ruber」に由来するルビジウムが元素のリストに加わりました。そしてさらに、タリウム、インジウム、ヘリウム、サマリウム、ジスプロシウム、ユーロピウムが続けて発見されました。

元素の周期律を唱えたDomitri Mendeleevの理論は、1875年にPaul-Émile Lecoq de Boisbaudranが分光学的手法によりガリウムを発見したことで地位を確立することになります。その元素はメンデレーエフが周期表の穴にまだ発見されていないエカアルミニウムとして予測されていた元素だったという話はあまりに有名でしょう。

tartaric

また光は化学を二次元から三次元の世界へ誘いました。Louis Pasteurは酒石酸の塩の結晶が2通りの形状がある事に気付き、その結晶によって平面偏光が逆に回転することを発見します。これは現在でいうところの化合物の立体化学の幕開けとなりました。

 

レーザーはどうでしょう。化学者はレーザーの利用というよりも、レーザーを発生させるための素材の開発で初期の貢献をしており、遅くとも1962年には論文が登場しています[2]。また、レーザーによる分光学も発展してきました。レーザーを用いた質量分析で田中耕一博士が2002年にノーベル化学賞を受賞したのは記憶に新しいところです。

さらに、Harry KrotoRichard Smalleyが行ったレーザーを用いた実験の過程でC60、すなわちフラーレンが見出され、1996年のノーベル化学賞になっています。

 

その他にも、フェムト秒レーザーの利用や、光レドックス触媒など光が関係する化学はホットなものが盛りだくさんです。化学者にとって光はまさしくライトセーバーのような頼もしい武器となっているのです。今からでも遅くありません!物理学者だけに限らず化学者もぜひこのIYL-2015を盛大に祝おうではありませんか!!

10月以降にもイベントが盛りだくさんでありますので参加を検討されてはいかがでしょうか。詳しくはこちら

大きなイベントとしては国際光年総括シンポジウムが12月11日に東大で開催されるそうです。ケムステも出展予定のサイエンスアゴラでもセッションがあるみたいですから、ケムステブースにご来場いただいた後にぜひどうぞ(セッションに参加予定の方もぜひケムステブースにお立ち寄り下さい)。

 

今回のポストはIYL-2015のサイトと、お馴染みNature Chemistry誌よりMichelle Francl教授のthesisを参考にさせていただきました。前回のはこちら

The enlightenment of chemistry

Francl, M. Nature Chem. 7, 761-762 (2015). doi: 10.1038/nchem.2354

 

関連文献

  1. Lewis, G. N. Nature 118, 874875 (1926). doi: 10.1038/118874a0
  2. Schimitschek, E. & Schwarz, E. Nature 196, 832833 (1962). doi: 10.1038/196832a0

 

関連書籍

[amazonjs asin=”4061568035″ locale=”JP” title=”光化学―基礎から応用まで (エキスパート応用化学テキストシリーズ)”][amazonjs asin=”4339066370″ locale=”JP” title=”エンジニアのための分子分光学入門”][amazonjs asin=”B013HK778M” locale=”JP” title=”スター・ウォーズ コンプリート・サーガ ブルーレイコレクション(9枚組) (初回生産限定) Blu-ray”]
Avatar photo

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. 接着系材料におけるmiHub活用事例とCSサポートのご紹介
  2. 微生物の電気でリビングラジカル重合
  3. 顕微鏡で有機分子の形が見えた!
  4. マイルの寄付:東北地方太平洋沖地震
  5. 2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予…
  6. データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3…
  7. 海外学会出張でeSIMを使ってみました
  8. 金と炭素がつくりだす新たな動的共有結合性を利用した新たな炭素ナノ…

注目情報

ピックアップ記事

  1. 渡邉 峻一郎 Shun Watanabe
  2. メバスタチン /Mevastatin
  3. つぶれにくく元にも戻せる多孔性結晶の開発
  4. 高分子のらせん構造を自在にあやつる -溶媒が支配する右巻き/左巻き構造形成の仕組みを解明-
  5. 第7回ImPACT記者懇親会が開催
  6. トクヤマが参入へ/燃料電池部材市場
  7. ヒドロシリル化反応 Hydrosilylation
  8. 私が思う化学史上最大の成果-1
  9. ナザロフ環化 Nazarov Cyclization
  10. 非天然アミノ酸合成に有用な不斉ロジウム触媒の反応機構解明

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP