[スポンサーリンク]

化学者のつぶやき

二段励起型可視光レドックス触媒を用いる還元反応

[スポンサーリンク]

2014年、レーゲンスブルク大学・Burkhard Königらは、二段階励起によって強力な反応駆動力を獲得する可視光レドックス触媒系を初めて見いだした。本論文で示される連続的光誘起電子移動(consecutive PET)現象は、光触媒のもつエネルギー的制限と、低反応性化学結合変換に関わる問題解決に有効なコンセプトとなり得る。

“Reduction of aryl halides by consecutive visible light-induced electron transfer processes”
Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B.* Science 2014, 346, 725. DOI: 10.1126/science.1258232  (アイキャッチ画像は論文より引用)

問題設定と解決した点

 ほとんどの可視光レドックス触媒系は一段励起で駆動するが、一方でエネルギー供与の理論上限も規定する[1]。その一方で自然界に目を向けると、光合成系絵は可視光二段励起(Z-スキーム機構)を通じて高エネルギー反応が実現されている。

 過去、可視光レドックス触媒系に適用のあったアリールラジカル前駆体は、極めて求電子性の高いものに限定されていた(ジアゾニウム塩、ヨードニウム塩、稀にヨウ化アリール)。この適用制限は従来型可視光レドックス触媒の還元力上限に起因する。塩化アリール(Ar-Cl)ともなると、酸素/水に不安定な強還元剤や、UV照射条件下によってのみ1電子還元が可能とされていた。

 本論文では、光誘起電子移動(PET)を2回起こす可視光レドックス触媒を用いることで強力な1電子還元系を簡便に実現し、Ar-Clなどの低反応性基質からアリールラジカルを生成可能とした。半導体材料を含む多成分を組織化させて人工的Z-スキームを実現した研究例[2]は存在するが、有機色素1分子のみでこれが実現されている点は特筆すべきだろう。

技術や手法の肝

犠牲還元剤共存下、PETによって生成したラジカルアニオンが十二分に安定であれば、さらなる励起を受けることができる。この特性に合致する光触媒候補として、ペリレンジイミド(PDI)[3]、溶解性を重視してジイソプロピルフェニル置換体を選択している。PDIから電気化学的に生成させたラジカルアニオン種PDI•–は、可視光励起を受けることが知られている[4]。

PETでPDI•–を生成させ、これをもう一度励起して十分な還元力を持たせることができれば、還元困難なアリールハライド種からアリールラジカル種を生成できるだろう、との仮説に基づく研究となっている(冒頭図)。

主張の有効性検証

反応系中で二段励起が本当に起こっているのか、またその励起種が本当に化学反応の活性種たりえるのか、という疑問点にどれだけ実証的論拠を集めて答えているかが、着目すべき最重要ポイントとなる。その観点からまとめる。

①Ar-Iより還元されづらい基質の使用

 PDI(5mol%)、Et3N、青色光(455nm)が全て存在する時、Ar-I, Ar-Br, Ar-Cl基質がAr-Hに還元される。NMe2、OMe置換Ar-Brは適用外。NO2置換Ar-Brはback-ETが主体になりno reaction。Ar-I/Ar-Br競合ではAr-Iのほうが還元される。太陽光でも530nm LEDでもOK(PDIの吸収帯が広いため)。

②反応機構解析

1)PDI•–は光照射下・Et3N存在下にしか発生しない(GC-MSでEt2NHの存在を確認、吸光スペクトルからも支持)。Quenching実験からも、PDIはAr-BrとではなくEt3Nとの間でPETを起こすことが支持される。
2)生じたPDI•–は暗所で4時間以上退色しないが、O2を吹き込むと退色。O2雰囲気下では、反応進行は低効率となる(PDI•–生成の酸素による阻害)。

冒頭論文より引用

3)予めPDI+Et3N+光もしくは化学試薬(S2O42-)で生成しておいたPDI•–を暗所に置き、そこにAr-Brを加えても反応は進行しない(2段励起の必要性)。
4)アリールラジカルの生成は、オレフィンの巻き込み・Meerwein型反応の進行(基質一般性テーブル参照)、TEMPO捕捉実験、DMF-d7溶媒からの重水素引抜きからも支持される。
5)より強い還元力を持つと考えられるPDI2–は、吸光スペクトルでは生成が確認されない(ジアニオン介在経路の否定)。
6)アミド構造は何でも良く、ペリレンコアだけあれば反応は進行する。

③理論面からの支持

Rehm-Weller式にてPDI•–励起状態の還元電位を計算すると、おおむねAr-Clの還元電位に相当するか超過する(具体的な計算値は記述がない・・・)。

基底状態のPDI•–は弱い還元力しか持たない[E0(PDI•–/PDI) = –0.88V, E0(PDI2–/PDI•–) = –1.18V in DMF vs Fc/Fc+]ため、Ar-Clを還元するにはやはり不足。

議論すべき点

  • 基質制限がまだ大きい。Ar-Cl/Ar-Brを還元できる点は素晴らしいが、かなり還元されやすい電子求引性置換基をもつ基質を選んでいる。
  • 2段励起可能というよりは、安定生成する開殻中間体をさらに励起した系と捉えるべきか?こう考えるともっと緩い発想でも良いはずで、例えば弱還元剤/酸化剤による化学反応で生じるラジカルアニオン/カチオンが十分に安定であり、かつ可視光励起能を持ちさえすれば、強力な光駆動型試薬として使えると思われる。すなわち設計上、必ずしも同一の分子種が2段励起に関わる必然性はないのではないか。

次に読むべき論文は?

  • ペリレンジイミド単位の材料分野での活用事例[2]
  • エネルギー分野で注目を集めるphoton upconversionコンセプトの総説[5]
  • 可視光蓄エネルギー材料として使える有機分子に関する論文

参考文献

  1. 例えば青色光440nmの光子エネルギーは、270 KJ/mol = 47.8 kcal/mol = 2.8eVである。
  2. Y. Sasaki, H. Kato, A. Kudo, J. Am. Chem. Soc. 2013, 135, 5441. DOI: 10.1021/ja400238r
  3. F. Würthner, Chem. Commun. 2004, 1564. DOI: 10.1039/B401630K
  4. D. Gosztola, M. P. Niemczyk, W. Svec, A. S. Lukas, M. R. Wasielewski, J. Phys. Chem. A 2000, 104, 6545. DOI: 10.1021/jp000706f
  5. Zhou, B.; Shi, B.; Jin, B.; Liu, X. Nat. Nanotech. 2015, 10, 924.  doi:10.1038/nnano.2015.251
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 二重可変領域を修飾先とする均質抗体―薬物複合体製造法
  2. フェニル酢酸を基質とするC-H活性化型溝呂木-Heck反応
  3. 名もなきジテルペノイドの初の全合成が導いた構造訂正
  4. 混合試料から各化合物のスペクトルを得る(DOSY法)
  5. 計算化学を用いたスマートな天然物合成
  6. 光で水素を放出する、軽量な水素キャリア材料の開発
  7. スルホキシイミンを用いた一級アミン合成法
  8. “かぼちゃ分子”内で分子内Diels–Alder反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 書物から学ぶ有機化学4
  2. 田中耕一 Koichi Tanaka
  3. Amazonを上手く使って書籍代を節約する方法
  4. 酒石酸/Tartaric acid
  5. ニッケル-可視光レドックス協働触媒系によるC(sp3)-Hチオカルボニル化
  6. セメントから超電導物質 絶縁体のはずなのに
  7. The Sol-Gel Handbook: Synthesis, Characterization and Applications
  8. ベンゼン環記法マニアックス
  9. ビス(ピリジン)ヨードニウムテトラフルオロボラート:Bis(pyridine)iodonium Tetrafluoroborate
  10. 岡本佳男 Yoshio Okamoto

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

食品添加物はなぜ嫌われるのか: 食品情報を「正しく」読み解くリテラシー

(さらに…)…

第100回―「超分子包摂による化学センシング」Yun-Bao Jiang教授

第100回の海外化学者インタビューは、Yun-Bao Jiang教授です。厦門大学化学科に所属し、電…

第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します!

第5回のケムステVシンポもうすぐですね。そして、第6回からほとんど連続となりますが、第7回のケムステ…

「自分の意見を言える人」がしている3つのこと

コロナ禍の影響により、ここ数カ月はオンラインでの選考が増えている。先日、はじめてオンラインでの面接を…

ブルース・リプシュッツ Bruce H. Lipshutz

ブルース・リプシュッツ(Bruce H. Lipshutz, 1951–)はアメリカの有機化学者であ…

化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~

bergです。さて、前回は日々微細化を遂げる電子回路の歴史についてご紹介しました。二回目の今回は、半…

研究テーマ変更奮闘記 – PhD留学(前編)

研究をやる上で、テーマってやっぱり大事ですよね。私はアメリカの大学院に留学中(終盤)という立場ですが…

島津製作所がケムステVシンポに協賛しました

さて、第5回目があと1週間に迫り、第6回目の開催告知も終えたケムステVシンポ。実は第7回目も既に決定…

Chem-Station Twitter

PAGE TOP