[スポンサーリンク]

一般的な話題

新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化

[スポンサーリンク]

 

新型コロナウイルス (SARS-CoV-2) 感染症に対する飲み薬として、Merck社のモルヌピラビル (図1 左) の臨床試験が進んでおり、緊急使用許可の申請が行われるなど実用化の見通しが高くなっています。(2021/11/06 追記: 英国で承認されました)。モルヌピラビルはいわゆる「核酸アナログ」製剤であり、ウイルスの RNA依存性RANポリメラーゼ (RdRp) を阻害して遺伝情報のコピーミスを引き起こすことで増殖を抑制します。SARS-CoV-2 だけでなく、中東呼吸器症候群コロナウイルス (MERS-CoV) やインフルエンザウイルスなど、多くのウイルス種に対して抗ウイルス活性を示します(1)。RdRpを阻害するという作用機序は COVID-19 流行初期に話題に上がったファビピラビル (アビガン®, 図1 右) と同じですが、モルヌピラビルはウイルスに対して「致死性突然変異」と呼ばれる現象を引き起こし、より強力な抗ウイルス活性を引き起こすことが示唆されています (2)

図1  モルヌピラビル及びファビピラビル (リボシド体) の構造式

モルヌピラビルの合成: 初期の経路

Emory University のグループによって最初に開示された合成スキームは、ウリジン (1) を出発物質とした全 5 工程の経路でした (図2) (3)。1,2,4-トリアゾリル基の導入反応の収率が 29% と低いうえに、最後の 2 工程 (脱保護と結晶化) の収率は報告されていません。初報は特許文献であったのでツッコまれなかったのでしょう。最終 2 工程を除くと、図2 の反応の総収率は 17% とイマイチな結果です。

図2   モルヌピラビルの合成経路・初報

Merck による生体触媒を用いた短工程化の報告

その後、Merck のグループはプレプリントサーバ ChemRxiv において、生体触媒を用いたモルヌピラビルの新規合成法を報告しました。その合成は、安価なリボースとウラシルを出発物質とし、なんと全3工程、総収率 69% で達成しています。そのスキームがコチラ (図3)。

図3   Merck のグループによる生体触媒を用いたモルヌピラビルの合成 (文献4より引用)

ここでは、Novozyme® 435 というレジン担持型リパーゼ (試薬メーカーサイトを用いてリボース5位のイソブチリル化を行なっています。図1のスキームと比較すると、2位・3位のヒドロキシ基の保護が不要になっており、トリエチルアミン、4-DMAP といった塩基の添加も要りません。Novozyme® 435 を用いた反応の溶媒条件検討についても報告されています (元文献はオープンアクセスなので、詳細が気になる方はご覧ください)。目的物の 5-イソブチリルリボースは水溶性が高かったため、反応後に固定化酵素を濾過で除去し、複製生物のイソ酪酸無水物とイソ酪酸を MTBE で振って除くことで、5-イソブチリルリボースを水溶液として精製しそのまま次反応へ用いています。さらに次反応でも種々の生体触媒を用いてウラシルをリボシル化し、最後にヒドロキシルアミン硫酸塩を硫酸水素アンモニウム・イミダゾール存在下、ヘキサメチルジシロキサン (HMDS) を溶媒かつ TMS 化の促進剤 (系中で生じる TMS-イミダゾールが TMS 化触媒として働く) として用いることでモルヌピラビルを得ています。この時、TMS 化剤はウラシル環の活性化に寄与しています。ここでも元文献では種々の条件検討が行われていますが、最終的に安価かつ無害な HMDS を溶媒かつ反応剤を用いて成功したのはプロセス的にも大成功と言えるでしょう。Merck の 智 が結集した成果ですね。

シチジンを原料とした 200 g スケールでの合成

マサチューセッツ工科大学と TCG GreenChem 社らのグループも、Novozyme® 435 を活用したモルヌピラビルの合成プロセス検討を報告しています (3)。特筆すべきは、短工程かつ 200 g スケールでの合成を達成しているところです。図4 には同じグループの previous work との比較も示されています。

図4  シチジンを出発物質としたモルヌピラビルの 200 g スケール合成

このスキームではアシル化試薬 9 を調製する必要がありますが、その 9 も数百グラムスケールで合成しています。Novozyme® 435 による conversion は 1,4-ジオキサンが最も良好な結果を与えており、ここではアセトン中での検討は行われていません。短工程でのプロセスでジオキサンを用いるのはちょっと…という気もしますが、あまり多種の溶媒は検討されていないので、これからに期待ですね (こちらの元論文もオープンアクセスで読めますので、ご参照ください)。次のヒドロキシルアミンの導入はウリジンを基質とした Merck の報告に比べ今一つ効率が良くありませんが、生体触媒を用いるプロセスを一工程減らせているのは特筆すべきところでしょう。

おわりに: プロセス化学における生体触媒

生体触媒は合成プロセス短工程化だけでなく、グリーンケミストリー (グリーン・サスティナブルケミストリー)の観点からも非常に有用であり、SDGs が掲げられる社会において今後さらに重要視されることは間違いないと考えられます。特にリパーゼは創薬化学で頻繁に用いられるアシル化反応を位置・立体選択的に行うために便利で、しかも安価に大量供給が可能という利点があります。また化合物を作るだけでなく、立体選択的アシル化を用いた光学分割などにも応用が効き、創薬プロセスへの適用範囲は幅広いと言えるでしょう。ただし、生体触媒も無限に使用できるではなく、触媒回転数と対溶媒性が重要になってきます。これらの課題を解決しようと人工生体触媒を開発されている研究者の方々には頭が下がる思いです。

今後も起こり得る SARS-CoV-2 のような世界的パンデミックへ迅速に対応するには、有効性の高い治療薬を短期間で大量供給することが必要になります。新型ウイルスに核酸アナログを使用するのは第一選択と言えるでしょうが、核酸アナログはその高度に官能基化された構造のため意外と合成が大変なものです。合成プロセスにおける生体触媒の活用は、人類と未知のウイルスとの闘いにおいての必殺技になるのではないでしょうか。

参考文献

(1) Painter WP.; Holman, W.; Bush, JA.;  Almazedi, Y.; Malik, H.;  Eraut, NCJE.; Morin, MJ.; Szewczyk, LJ.; Painter, GR., “Human Safety, Tolerability, and Pharmacokinetics of Molnupiravir, a Novel Broad-Spectrum Oral Antiviral Agent with Activity against SARS-CoV-2“, Antimicrob. Agents Chemother, 2021, 65, e02428-20, doi: 10.1128/AAC.02428-20.

(2) Malone, B.; Campbell, EA., “Molnupiravir: coding for catastrophe”, Nat. Struct. Mol. Biol, 2021, 28, 706-708, doi: 10.1038/s41594-021-00657-8.

(3) Ahlqvist, GP.; McGeough, CP.; Senanayake, C.; Armstrong, JD., Yadaw, A.; Roy, S.; Ahmad, S.; Snead, DR.; Jamison, TF., “Progress Toward a Large-Scale Synthesis of Molnupiravir (MK-4482,EIDD-2801) from Cytidine”, ACS Omega, 2021, 6, 10396-10402, doi: 10.1021/acsomega.1c00772.

(4) Benkovics, T.; McIntosh, JA.; Silverman, SM.;  Kong, J.; Maligres, P.; Itoh, T.; Yang, H.; Huffman, MA.; Verma, D.; Pan,W.;  Ho, H.; Vroom, J.; Knight, A.; Hurtak, J.; Morris, W.; Strotman, NA.; Murphy, G.; Maloney, KM.: Fier, PA., “Evolving to an Ideal Synthesis of Molnupiravir, an Investigational Treatment for COVID‐19”, ChemRexiv, Dec 23, 2020, Version 1, doi: 10.26434/chemrxiv.13472373.v1.

関連書籍

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 博士号で世界へ GO!-ー日本化学会「化学と工業:論説」より
  2. 知的財産権の基礎知識
  3. アルメニア初の化学系国際学会に行ってきた!③
  4. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part…
  5. 第30回光学活性化合物シンポジウムに参加してみた
  6. 第32回ケムステVシンポ「映える化学・魅せる化学で活躍する若手が…
  7. 研究者のためのCG作成術③(設定編)
  8. 知の市場:無料公開講座参加者募集のご案内

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高分子材料中の微小異物分析技術の実際【終了】
  2. 【読者特典】第92回日本化学会付設展示会を楽しもう!PartIII+薬学会も!
  3. 【マイクロ波化学(株)環境/化学分野向けウェビナー】 #CO2削減 #リサイクル #液体 #固体 #薄膜 #乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ
  4. 秋吉一成 Akiyoshi Kazunari
  5. サントリー生命科学研究者支援プログラム SunRiSE
  6. 高橋 大介 Daisuke Takahashi
  7. アート オブ プロセスケミストリー : メルク社プロセス研究所での実例
  8. 網井トリフルオロメチル化 Amii Trifluoromethylation
  9. アルゼンチン キプロス
  10. 分析技術ーChemical Times特集より

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP