[スポンサーリンク]

一般的な話題

新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化

[スポンサーリンク]

 

新型コロナウイルス (SARS-CoV-2) 感染症に対する飲み薬として、Merck社のモルヌピラビル (図1 左) の臨床試験が進んでおり、緊急使用許可の申請が行われるなど実用化の見通しが高くなっています。(2021/11/06 追記: 英国で承認されました)。モルヌピラビルはいわゆる「核酸アナログ」製剤であり、ウイルスの RNA依存性RANポリメラーゼ (RdRp) を阻害して遺伝情報のコピーミスを引き起こすことで増殖を抑制します。SARS-CoV-2 だけでなく、中東呼吸器症候群コロナウイルス (MERS-CoV) やインフルエンザウイルスなど、多くのウイルス種に対して抗ウイルス活性を示します(1)。RdRpを阻害するという作用機序は COVID-19 流行初期に話題に上がったファビピラビル (アビガン®, 図1 右) と同じですが、モルヌピラビルはウイルスに対して「致死性突然変異」と呼ばれる現象を引き起こし、より強力な抗ウイルス活性を引き起こすことが示唆されています (2)

図1  モルヌピラビル及びファビピラビル (リボシド体) の構造式

モルヌピラビルの合成: 初期の経路

Emory University のグループによって最初に開示された合成スキームは、ウリジン (1) を出発物質とした全 5 工程の経路でした (図2) (3)。1,2,4-トリアゾリル基の導入反応の収率が 29% と低いうえに、最後の 2 工程 (脱保護と結晶化) の収率は報告されていません。初報は特許文献であったのでツッコまれなかったのでしょう。最終 2 工程を除くと、図2 の反応の総収率は 17% とイマイチな結果です。

図2   モルヌピラビルの合成経路・初報

Merck による生体触媒を用いた短工程化の報告

その後、Merck のグループはプレプリントサーバ ChemRxiv において、生体触媒を用いたモルヌピラビルの新規合成法を報告しました。その合成は、安価なリボースとウラシルを出発物質とし、なんと全3工程、総収率 69% で達成しています。そのスキームがコチラ (図3)。

図3   Merck のグループによる生体触媒を用いたモルヌピラビルの合成 (文献4より引用)

ここでは、Novozyme® 435 というレジン担持型リパーゼ (試薬メーカーサイトを用いてリボース5位のイソブチリル化を行なっています。図1のスキームと比較すると、2位・3位のヒドロキシ基の保護が不要になっており、トリエチルアミン、4-DMAP といった塩基の添加も要りません。Novozyme® 435 を用いた反応の溶媒条件検討についても報告されています (元文献はオープンアクセスなので、詳細が気になる方はご覧ください)。目的物の 5-イソブチリルリボースは水溶性が高かったため、反応後に固定化酵素を濾過で除去し、複製生物のイソ酪酸無水物とイソ酪酸を MTBE で振って除くことで、5-イソブチリルリボースを水溶液として精製しそのまま次反応へ用いています。さらに次反応でも種々の生体触媒を用いてウラシルをリボシル化し、最後にヒドロキシルアミン硫酸塩を硫酸水素アンモニウム・イミダゾール存在下、ヘキサメチルジシロキサン (HMDS) を溶媒かつ TMS 化の促進剤 (系中で生じる TMS-イミダゾールが TMS 化触媒として働く) として用いることでモルヌピラビルを得ています。この時、TMS 化剤はウラシル環の活性化に寄与しています。ここでも元文献では種々の条件検討が行われていますが、最終的に安価かつ無害な HMDS を溶媒かつ反応剤を用いて成功したのはプロセス的にも大成功と言えるでしょう。Merck の 智 が結集した成果ですね。

シチジンを原料とした 200 g スケールでの合成

マサチューセッツ工科大学と TCG GreenChem 社らのグループも、Novozyme® 435 を活用したモルヌピラビルの合成プロセス検討を報告しています (3)。特筆すべきは、短工程かつ 200 g スケールでの合成を達成しているところです。図4 には同じグループの previous work との比較も示されています。

図4  シチジンを出発物質としたモルヌピラビルの 200 g スケール合成

このスキームではアシル化試薬 9 を調製する必要がありますが、その 9 も数百グラムスケールで合成しています。Novozyme® 435 による conversion は 1,4-ジオキサンが最も良好な結果を与えており、ここではアセトン中での検討は行われていません。短工程でのプロセスでジオキサンを用いるのはちょっと…という気もしますが、あまり多種の溶媒は検討されていないので、これからに期待ですね (こちらの元論文もオープンアクセスで読めますので、ご参照ください)。次のヒドロキシルアミンの導入はウリジンを基質とした Merck の報告に比べ今一つ効率が良くありませんが、生体触媒を用いるプロセスを一工程減らせているのは特筆すべきところでしょう。

おわりに: プロセス化学における生体触媒

生体触媒は合成プロセス短工程化だけでなく、グリーンケミストリー (グリーン・サスティナブルケミストリー)の観点からも非常に有用であり、SDGs が掲げられる社会において今後さらに重要視されることは間違いないと考えられます。特にリパーゼは創薬化学で頻繁に用いられるアシル化反応を位置・立体選択的に行うために便利で、しかも安価に大量供給が可能という利点があります。また化合物を作るだけでなく、立体選択的アシル化を用いた光学分割などにも応用が効き、創薬プロセスへの適用範囲は幅広いと言えるでしょう。ただし、生体触媒も無限に使用できるではなく、触媒回転数と対溶媒性が重要になってきます。これらの課題を解決しようと人工生体触媒を開発されている研究者の方々には頭が下がる思いです。

今後も起こり得る SARS-CoV-2 のような世界的パンデミックへ迅速に対応するには、有効性の高い治療薬を短期間で大量供給することが必要になります。新型ウイルスに核酸アナログを使用するのは第一選択と言えるでしょうが、核酸アナログはその高度に官能基化された構造のため意外と合成が大変なものです。合成プロセスにおける生体触媒の活用は、人類と未知のウイルスとの闘いにおいての必殺技になるのではないでしょうか。

参考文献

(1) Painter WP.; Holman, W.; Bush, JA.;  Almazedi, Y.; Malik, H.;  Eraut, NCJE.; Morin, MJ.; Szewczyk, LJ.; Painter, GR., “Human Safety, Tolerability, and Pharmacokinetics of Molnupiravir, a Novel Broad-Spectrum Oral Antiviral Agent with Activity against SARS-CoV-2“, Antimicrob. Agents Chemother, 2021, 65, e02428-20, doi: 10.1128/AAC.02428-20.

(2) Malone, B.; Campbell, EA., “Molnupiravir: coding for catastrophe”, Nat. Struct. Mol. Biol, 2021, 28, 706-708, doi: 10.1038/s41594-021-00657-8.

(3) Ahlqvist, GP.; McGeough, CP.; Senanayake, C.; Armstrong, JD., Yadaw, A.; Roy, S.; Ahmad, S.; Snead, DR.; Jamison, TF., “Progress Toward a Large-Scale Synthesis of Molnupiravir (MK-4482,EIDD-2801) from Cytidine”, ACS Omega, 2021, 6, 10396-10402, doi: 10.1021/acsomega.1c00772.

(4) Benkovics, T.; McIntosh, JA.; Silverman, SM.;  Kong, J.; Maligres, P.; Itoh, T.; Yang, H.; Huffman, MA.; Verma, D.; Pan,W.;  Ho, H.; Vroom, J.; Knight, A.; Hurtak, J.; Morris, W.; Strotman, NA.; Murphy, G.; Maloney, KM.: Fier, PA., “Evolving to an Ideal Synthesis of Molnupiravir, an Investigational Treatment for COVID‐19”, ChemRexiv, Dec 23, 2020, Version 1, doi: 10.26434/chemrxiv.13472373.v1.

関連書籍

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 第30回光学活性化合物シンポジウム
  2. 自己紹介で差がつく3つのポイント
  3. 有機合成で発生する熱量はどのくらい?EasyMax HFCal
  4. トランジスタの三本足を使ってsp2骨格の分子模型をつくる
  5. 活性酸素を効率よく安定に生成できる分子光触媒 〜ポルフィリンと分…
  6. 分子間相互作用の協同効果を利用した低対称分子集合体の創出
  7. 忍者はお茶から毒をつくったのか
  8. “防護服の知恵.com”を運営するアゼアス(株)と記事の利用許諾…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. セライトのちょっとマニアックな話
  2. マイクロ空間内に均一な原子層を形成させる新技術
  3. 有機合成化学協会誌2019年9月号:炭素–水素結合ケイ素化・脱フッ素ホウ素化・Chemically engineered extracts・クロロアルケン・ニトレン
  4. 稀少な金属種を使わない高効率金属錯体CO2還元光触媒
  5. Dead Endを回避せよ!「全合成・極限からの一手」⑨
  6. 学会に行こう!高校生も研究発表できます
  7. ハリース オゾン分解 Harries Ozonolysis
  8. ネイチャー論文で絶対立体配置の”誤審”
  9. ブレオマイシン /Bleomycin
  10. 創薬開発で使用される偏った有機反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/05/15 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在

第613回のスポットライトリサーチは、千葉大学 石井久夫研究室の大原 正裕(おおはら まさひろ)さん…

GoodNotesに化学構造が書きやすいノートが新登場!その使用感はいかに?

みなさんは現在どのようなもので授業ノートを取っていますでしょうか。私が学生だったときには電子…

化学者のためのWordマクロ -Supporting Informationの作成作業効率化-

「化合物データの帰属チェックリスト、見やすいんですが、もっと使いやすくならないですか」ある日、ラ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP