[スポンサーリンク]

化学者のつぶやき

緑色蛍光タンパク質を真似してRNAを光らせる

[スポンサーリンク]

 

緑色蛍光タンパク質(green fluorescent protein; GFP)は、研究の世界で今や欠かすことのできない存在となっています。その重要さが認められ、オワンクラゲからの単離に成功した下村脩氏は、2008年にノーベル化学賞を受賞しました。今回は、タンパク質ではなく、RNAでも光らせよう、という話題を紹介します。


 

緑色蛍光タンパク質など一連の遺伝子産物は、いろいろな場面で用いられており、GFPで光らせることができたからこそ分かった知見には膨大なものがあります。緑色だけではなく、緑色蛍光タンパク質を改変して作った黄色蛍光タンパク質(yellow fluorescent protein; YFP)・青色蛍光タンパク質(blue fluorescent protein; BFP)・赤色蛍光タンパク質(red fluorescent protein; RFP)などもまたよく用いられています。蛍光タンパク質を用いたよくある手法として、機能未知のタンパク質とGFPの融合遺伝子産物について、細胞のどこに分布するのか調べるというようなことが、例としてあげられます。また、詳しく原理は述べませんが、これに加えて、蛍光共鳴移動によるタンパク質間相互作用の検出での役割も重要です。緑色蛍光タンパク質の結晶構造解析の結果を載せておきますのでご覧ください。

GREEN020.PNG

結晶構造解析データをProtein Data Bankより出力

タンパク質と同じく、RNAもまた細胞の機能に重要な役割を持ち、いろいろな場面で解析の対象になります。DNAから転写されてRNAへ、RNAから翻訳されてタンパク質へと、遺伝情報がやりとりされるセントラルドグマにおける記憶媒体のような役割だけが、RNAの機能ではありません。RNAの多彩な機能が、近年になって明らかになりはじめ、注目を集めています。さながら、ヨーロッパのルネサンスのように、はなひらいた研究分野です。リボザイムリボスイッチRNA干渉RNA編集などなど、興味深い研究課題は枚挙にいとまがありません。しかしながら、RNA分子の挙動を、蛍光によって追跡する方法は、タンパク質の場合と異なって不足しています。

 

今回、コーネル大学のJaffreyらの研究チームは、GFPの蛍光原子団を参考にして、RNAの特別な配列を認識して結合する蛍光分子を設計しました。[1]

GFPの蛍光原子団は次のようになっており、チロシンに由来する構造が特徴的です。この蛍光原子団はGFPの中央にあり、周囲をペプチド鎖で囲まれることで、水分子による消光を抑制しています。

GREEN022.PNG図は論文[1]より

このGFPの蛍光原子団の後に、まず見てもらいたい分子が、今回、報告されたこの分子です。周りを囲まれることで鮮やかな輝きを発揮するという性質が、上手く利用されています。

GREEN023.PNG

おおっ!似ている!

さらに、ベンゼン環の置換基を変えて、いろいろな蛍光分子を作成したようです。そして、RNAの特別な配列と結合する蛍光分子を、いくつか開発しました。また、青色・緑色・黄色・赤色というように、可視光の範囲で多彩に光らせることにも成功しました。カラフルな色彩を、ぜひ論文の図2D(Fig. 2D)で確認したいところです。

さて、RNAを光らせる手順を簡単に確認しましょう。例えば、このようなRNAが転写されるような配列を、調べたい遺伝配列の近傍につないで、ゲノムDNAに遺伝子導入します。GFPの蛍光原子団を囲むペプチド鎖の代わりに、このRNA配列が水分子による消光をブロックします。GREEN021.PNG

このようなRNA

そして、このような蛍光分子を生きたままの培養細胞に取り込ませます。フッ素原子が入っていますが、肝心要の部分は共通です。

GREEN024.PNG

このような蛍光分子

ここで励起光を当てて蛍光顕微鏡で観察すると、目的のRNAの挙動を可視化できます。このような技術は、RNAとRNA、あるいはRNAとタンパク質の相互作用を、蛍光共鳴移動のような方法で検出する際にも活用できるだろうと期待されています。

 

生命現象を解き明かすために、生命現象を模倣して、自然にないものを人の手で作る。化学の魅力を感じる報告でした。

 

参考論文

[1] 緑色蛍光タンパク質のRNA模倣物質

“RNA Mimics of Green Fluorescent Protein” Paige, J.P.; Wu, K. Y.; Jaffrey, S. R. Science 29 July 2011 DOI: 10.1126/science.1207339 

 

関連書籍

Green

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 総収率57%! 超効率的なタミフルの全合成
  2. サイエンス・コミュニケーションをマスターする
  3. STAP細胞問題から見えた市民と科学者の乖離ー前編
  4. 【21卒イベント】「化学系学生のための企業研究セミナー」 大阪1…
  5. 半導体・センシング材料に応用可能なリン複素環化合物の誘導体化
  6. 年収で内定受諾を決定する際のポイントとは
  7. カルベンで挟む!
  8. フロリゲンが花咲かせる新局面

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 米FDA立て続けに抗肥満薬承認:Qsymia承認取得
  2. 取り扱いやすく保存可能なオキシム試薬(O-ベンゼンスルホニルアセトヒドロキサム酸エチル)
  3. 金属ヒドリド水素原子移動(MHAT)を用いた四級炭素構築法
  4. アーサー・L・ホーウィッチ Arthur L. Horwich
  5. アノードカップリングにより完遂したテバインの不斉全合成
  6. 第159回―「世界最大の自己組織化分子を作り上げる」佐藤宗太 特任教授
  7. 昭和電工、青色LEDに参入
  8. 科学英語の書き方とプレゼンテーション (増補)
  9. 海外機関に訪問し、英語講演にチャレンジ!~① 基本を学ぼう ~
  10. 渡辺芳人 Yoshihito Watanabe

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年11月
« 10月   12月 »
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

PEG化合物を簡単に精製したい?それなら塩化マグネシウム!

ケミカルバイオロジー・生体関連化学用途の分子構造において、とにかくよく見かけるポリエチレングリコール…

バリー・ハリウェル Barry Halliwell

バリー・ハリウェル (Barry Halliwell、1949年10月18日-)は、イギリスの生化学…

湾曲したパラフェニレンで繋がれたジラジカルの挙動  〜湾曲効果による電子スピン状態の変化と特異性〜

第342回のスポットライトリサーチは、広島大学大学院 先進理工系科学研究科・宮澤友樹 さんにお願いし…

第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授

第165回の海外化学者インタビューは、エドウィン(エド)・コンステイブル教授です。バーゼル大学化学科…

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP