[スポンサーリンク]

化学者のつぶやき

ナノの世界の交通事情~セルラーゼも渋滞する~

 

 

 

 

F3.large.jpg バイオエタノールの原料として注目されている多糖であるセルロース,そしてそれを分解する酵素セルラーゼ。この組み合わせで速やかにグルコースにまで分解されれば何の問題もなかったのだが,固体のセルロースを分解するには時間がかかりすぎる。その原因は単に、酵素の固液反応~2次元平面上で進行する事から反応が遅い~、ということで片付けられていたが、どうやら原因はそれだけではなさそうだということが、最新鋭の原子間力顕微鏡(HS-AFM)のおかげで明らかになった。

 

 

 

 

 

 

 

 

セルロース固体表面上でセルロースを分解する代表的な酵素に、セロビオハイドロラーゼ(CBH)が知られている。この酵素は、セルロース表面に結合するセルロースバインディングドメイン(CBD)を有し、加水分解効率を向上させていると考えられている。しかし酵素反応の場は固液界面というほぼ2次元平面であり、かつ、強固な水素結合で固まっているセルロースが基質である。加水分解反応が速く進むのは困難であるのは自明であると考えられてきた。

しかし、ことはそう単純ではないことが最新の高速原子間力顕微鏡観察により明らかになりつつある。これまで、1分子の酵素の運動をリアルタイムで見るなんてことは夢だと思われていたが、最新の高速原子間力顕微鏡(HS-AFM,参考文献1)によってセルラーゼがセルロース表面上の動きをとらえることに成功し、セルロース表面のCHB達の交通事情までが明らかになった(2)。

東京大学の五十嵐らは、このHS-AFMwoセルロース表面での酵素反応の現場に向かい、その遅い現象に迫っていった。まず彼らは、トリコデルマ属由来のCBHであるTrCel7Aを用い、グラファイト基板上に撒いた結晶性セルロース上での挙動をHS-AFMで観察した。

F1.medium.gif

図1.HS-AFM測定に用いた結晶性セルロースとTrCel7A(文献3より引用)

野生型TrCel7Aでは、結晶性セルロース表面上を直線的に動く様を観測できたが、一方、加水分解活性のない変異体では、動的な様子は観測できなかった。これらの結果から、TrCel7Aは繊維方向に直線的に進むことが明らかになった(3)。

前回の報告より2年たった今年、さらにパワーアップしたHS-AFMを用いて様々な結晶性セルロースを用いてさらなる観測を行った。TrCel7Aの移動速度を再度計測したところ、前回の報告より2倍の速度であることが明らかになった。今回の報告では、移動しているものと止まっているものが同時に観測されている。どうやら、以前のHS-AFMで観測されたTrCel7Aの移動現象は、移動しているものと止まっているものの平均像を見ていたということである。その、止まっているという現象は、要するに、前を走っているTrCel7Aが減速ないし停止して,後続のTrCel7Aが進めなくなるという”渋滞”現象というわけである。この状態に、協同的に分解するといわれているCBHであるTrCel6Aの添加や、分解しやすくなる処理を施したセルロースを基質として用いたときでは渋滞が解消された。交通整理をする車や道路の表面状態が良くなれば、渋滞は解消されるという、全く本物の道路と同じような現象が起きていた。以上の結果を具体的に確認するために、是非supporing informationの動画をご覧ください。

この研究はタイトルが面白いだけではなく、界面上で触媒作用を示す酵素全般に適用可能性を示すことができたことが大きい。たかが加水分解反応、されど加水分解反応。今後の研究の発展に目が離せません。


  • 参考文献

(1)T. Ando et al., Proc. Natl. Acad. Sci. U.S.A. 98, 12468 (2001). doi:10.1073/pnas.211400898

(2)K. Igarashi, T. Uchihashi, A. Koivula, M. Wada, S. Kimura, T. Okamoto, M. Penttilä, T. Ando, M. Samejima, Science, 333, 1279-1282 (2011). doi:10.1126/science.1208386

(3)K. Igarashi, A. Koivula, M. Wada, S. Kimura, M. Penttila, M. Samejima, J. Biol. Chem., 284, 36186-36190 (2009). doi:10.1074/jbc.M109.034611

追伸:交通渋滞というよりか、鉋、のように見えるのは私だけでしょうか?

 

  • 関連書籍

The following two tabs change content below.
あぽとーしす

あぽとーしす

微生物から動物、遺伝子工学から有機合成化学まで広く 浅く研究してきました。論文紹介や学会報告などを通じて、研究者間の橋掛けのお手 伝いをできればと思います。一応、大学教員で、糖や酵素の研究をしております。
あぽとーしす

最新記事 by あぽとーしす (全て見る)

関連記事

  1. 研究室での英語【Part 3】
  2. 外国人研究者あるある
  3. 化学素人の化学読本
  4. 【速報】ノーベル化学賞2014ー超解像顕微鏡の開発
  5. マイクロ波とイオン性液体で単層グラフェン大量迅速合成
  6. 研究職の転職で求められる「面白い人材」
  7. 抽出精製型AJIPHASE法の開発
  8. 「日本研究留学記: オレフィンの内部選択的ヒドロホルミル化触媒」…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. TBSの「未来の起源」が熱い!
  2. 福山アミン合成 Fukuyama Amine Synthesis
  3. 日本企業クモ糸の量産技術確立:強さと柔らかさあわせもつ究極の素材
  4. 第3回ITbM国際シンポジウム(ISTbM-3)、第11回平田アワード、第1回岡崎アワード
  5. ポリ塩化ビニルがセンター試験に出題されたので
  6. 【書籍】「喜嶋先生の静かな世界」
  7. 子供と一緒にネットで化学実験を楽しもう!
  8. 第15回光学活性シンポジウム
  9. クロロ(1,5-シクロオクタジエン)ロジウム(I) (ダイマー):Chloro(1,5-cyclooctadiene)rhodium(I) Dimer
  10. 第31回 ナノ材料の階層的組織化で新材料をつくる―Milo Shaffer教授

関連商品

注目情報

注目情報

最新記事

小スケールの反応で気をつけるべきこと

前回はスケールアップについて書いたので、今回は小スケールの反応での注意すべきことについてつらつらと書…

尿から薬?! ~意外な由来の医薬品~ その1

Tshozoです。今まで尿に焦点をあてた記事を数回書いてきたのですが、それを調べるうちに「1…

OPRD誌を日本プロセス化学会がジャック?

OPRD(Organic Process Research & Development)はJ…

ワークアップの悪夢

みなさま、4月も半分すぎ、新入生がラボに入ってきていると思います。そんな頃によく目にするのが、エマル…

単一分子の電界発光の機構を解明

第194回のスポットライトリサーチは、理化学研究所Kim表面界面科学研究室で研究員を務められていた、…

アメリカで Ph.D. を取る -Visiting Weekend 参加報告 (後編)-

前回に引き続き、アメリカの大学院の受験の合格者を対象にした学校説明会の参加報告です。今回はUC Be…

Chem-Station Twitter

PAGE TOP