[スポンサーリンク]

化学者のつぶやき

エチレンをつかまえて

 

有機化学の研究では生理活性よりも複雑構造の天然化合物ばかり注目されるものではありますが、その逆をいって、植物ホルモンとしても知られるエチレンの化学を、ひとつ紹介したいと思います。小さく単純なエチレンを、どうつかまえて制御するのか、最先端の化学材料が挑みます。その鍵は、植物のエチレン受容体タンパク質と同じく原子にあり!?

生理活性を持つ最も複雑な構造の天然化合物は何でしょうか。ポルフィリンのドレスをまとったコバルトの王妃が住まう紅の城 コバラミンでしょうか。32の環と98の不斉点を持ち分子量3422の最大にして最後の砦 マイトトキシンでしょうか。それとも一足飛びにペプチドホルモンのたぐいでしょうか。

では、逆に、生理活性を持つ最も単純な構造の天然有機化合物は何でしょうか。おそらく断トツのトップにランクインする物質は、植物ホルモンのエチレンだと思います。

 

生理活性物質としてのエチレンをめぐる天然のシステム

高校の化学からおなじみのエチレンは、炭素数2・水素数4の、最も単純な構造をしたアルケンです。ガス灯のそばにあった街路樹が、他よりも早く落葉したことがきっかけになって、エチレンは植物ホルモンとして知られることになりました。エチレンを主成分として含むガスが、当時のガス灯に使われていたのです。植物ホルモンのエチレンには、主として、植物の老化や果実の成熟を調節する機能があります。

エチレンでおなじみの理科実験と言えば、リンゴを使ったものでしょう。リンゴとバナナをいっしょにしておけばバナナはすぐに黒変し、リンゴとホウレンソウをいっしょにしておけばホウレンソウはすぐに黄変します。

GREEN20120606ET2.png

 

リンゴのようなクリマクテリック果実(climacteric fruit)には、成熟のクライマックスでエチレンを大量に放出する性質があります。果樹全体で成熟を揃えるためでしょうか。リンゴと同じバラ科果樹であるナシやモモに加えて、トマトやメロンなどもクリマクテリック果実に該当するとされます。

 

小さく構造も単純なエチレンですが、植物はしっかりと感知する仕組みを持っています。エチレンの受容体タンパク質は、ETR1(ETHYLENE RESPONSE 1)遺伝子産物と、その相同な遺伝子産物です。エチレンの応答が弱い変異体の探索からシロイヌナズナetr1変異型株は単離され、これによりその後ETR1タンパク質はエチレン受容体として同定されました。今ではETR1タンパク質がエチレンを認識した後、植物の成長にかかわる遺伝子の発現が変化するまで、シグナル伝達のおよその道筋も明らかになっています。

ETR1タンパク質は植物細胞の小胞体(endoplasmic reticulum)膜に分布します。エチレンの認識部位には原子が噛んでいることが分かっていますが、タンパク質結晶構造解析[1]は部分構造に対してしか行われておらず、詳しくは分かっていません。揮発化合物との共結晶、かつ膜タンパク質ということで、凄まじく難易度の高い気がしますが、腕に自信のある方は挑戦してみるとよいかもしれません。

 

GREEN20120606ET3.png

この結晶構造ではそもそも正しく折りたたまれているのか?

 

エチレンにまつわる天然のシステムについて、分かっていることをざっとまとめてきました。それではエチレンにまつわる人工のシステムではどうでしょうか、話を移したいと思います。

 

エチレンをつかまえる人工のシステム

高価なガスクロマトグラフィー質量分析機器なしにエチレンが検出できれば、便利な場面がいくつかあります。輸入バナナの追熟や、野菜倉庫で、エチレンの多寡をモニターすることができます。

ここで、エチレンをつかまえるための鍵は、先ほどのETR1タンパク質と同じく原子です。最近の研究で、次に示す銅化合物とエチレンの反応が、わりと扱いやすいことが判明しました。この銅化合物は、炭素間の多重結合の上にあるパイ電子雲に配位することができます。

GREEN20120606ET4.png

ETR1タンパク質と同じく銅原子がエチレンをつかまえる鍵

 

空気の成分に炭素間の多重結合を持つものはありません。そこで、共役系がつらなった高分子を合成し、先ほどの銅化合物を加えた結果がこちらです。銅化合物が配位する相手は、エチレンと共役系のつらなった高分子との間で拮抗します。これにより、蛍光の明暗として、エチレンの有無を検出できます[2]。

 

GREEN20120606ET5.png

共役系のつらなった高分子に銅化合物が配位すると消光[2]

 

感度をさらに高めたシステムが、電気伝導度を用いたこちらです。先ほど登場した高分子の代わりに、炭素間の多重結合にはカーボンナノチューブが採用されています。銅化合物が配位する相手は、エチレンとカーボンナノチューブとの間で拮抗します。これにより、電気の伝わりやすさで、エチレンの多寡を定量できます[3]。

 

GREEN20120606ET6.png

ここに先ほどの銅化合物を加える[3]

 

実際に、このような装置で、果実から放出されるエチレンの定量に成功しています[3]。あまりのユニークさに、植物のエチレン受容体であるETR1タンパク質も、もし人格があれば、さぞやこの生体模倣材料にはびっくり驚くことでしょう。

 

たまたま単離された分子の構造が複雑だから価値があるのか

複雑構造の決定から、精密合成といった構造有機化学的な研究は、わが国では長きにわたり伝統的に興味の中心でした。細胞毒性などありきたりな生理活性しか知られていない場合でも、合成経路に実用的な意味がまったくない場合でも、ユニークで複雑な構造を持つ化合物の合成は、合成化学のコミュニティーでは高く評価されてきました。

しかし、外部からの投与によって、究極の複雑系である生物に特異な応答を引き起こし、生命現象を制御するという観点もまた、同時に天然化合物が持つ面白みのひとつです。エチレンからマイトトキシンまで極端なものはともかくとして、その間にある頑張れば作れる難易度の天然化合物では、作って何をするのかという視点もまた、今後は意識していくべきところかもしれません。

一寸の虫ならぬ一寸のエチレンにも、五分ならぬ十分の化学が、魂を吹き込んで活躍しています。モノを取るだけではなく、その作用する仕組みを明かすことには、生体模倣材料をはじめ新たな研究分野がひそんでいることでしょう。

 

参考論文

[1] 植物のエチレン受容体ETR1の部分的な立体構造

“The structure of the signal receiver domain of the Arabidopsis thalianaethylene receptor ETR1” Hans-Joachim Muller-Dieckmann et al. Structure 1999 DOI: 10.1016/S0969-2126(00)88345-8

[2] エチレンを蛍光の明るさで検出

“Detection of Ethylene Gas by Fluorescence Turn-On of a Conjugated Polymer” Birgit Esser et al. Angew. Chem. Int. Ed. 2010 DOI: 10.1002/anie.201003899

[3] エチレンを電気の伝わりやさで検出

“Selective Detection of Ethylene Gas Using Carbon Nanotube-based Devices: Utility in Determination of Fruit Ripeness” Birgit Esser et al. Angew. Chem. Int. Ed. 2012 DOI: 10.1002/anie.201201042

 

関連書籍

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. 金属キラル中心をもつ可視光レドックス不斉触媒
  2. アミドをエステルに変化させる触媒
  3. 立体選択的な(+)-Microcladallene Bの全合成
  4. ヒドロアシル化界のドンによる巧妙なジアステレオ選択性制御
  5. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  6. ノーベル賞化学者に会いに行こう!「リンダウ・ノーベル賞受賞者会議…
  7. 芳香族求核置換反応で18Fを導入する
  8. スズ化合物除去のニュースタンダード:炭酸カリウム/シリカゲル

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 世界を股にかける「国際学会/交流会 体験記」
  2. カスケード反応で難関天然物をまとめて攻略!
  3. 海洋天然物パラウアミンの全合成
  4. 有機リチウム試薬 Organolithium Reagents
  5. C-H活性化触媒を用いる(+)-リゾスペルミン酸の収束的合成
  6. ボールドウィン則 Baldwin’s Rule
  7. 100年前のノーベル化学賞ーリヒャルト・ヴィルシュテッター
  8. エストロゲン、閉経を境に正反対の作用
  9. 何を全合成したの?Hexacyclinolの合成
  10. 花粉症 花粉飛散量、過去最悪? 妙案なく、つらい春

関連商品

注目情報

注目情報

最新記事

工程フローからみた「どんな会社が?」~タイヤ編 その1

Tshozoです。今回の主役はゴムで出来ている車両用タイヤ。通勤時に道路で毎日目にするわりに…

感染制御ー薬剤耐性(AMR)ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

有機合成化学協会誌2019年1月号:大環状芳香族分子・多環性芳香族ポリケチド天然物・りん光性デンドリマー・キャビタンド・金属カルベノイド・水素化ジイソブチルアルミニウム

有機合成化学協会が発行する有機合成化学協会誌、2019年1月号がオンライン公開されました。今…

リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開発されている

スマートフォンや電気自動車の普及によって、エネルギー密度が高く充電効率も良いリチウムイオンバッテリー…

学部4年間の教育を振り返る

皆様、いかがお過ごしでしょうか。学部4年生の筆者は院試験も終わり、卒論作成が本格的に始まるまでの束の…

ダイセルが開発した新しいカラム: DCpak PTZ

ダイセルといえば「キラルカラムの雄」として知られており、光学活性化合物を分離するキラルカラム「CHI…

Chem-Station Twitter

PAGE TOP