[スポンサーリンク]

化学者のつぶやき

エチレンをつかまえて

 

有機化学の研究では生理活性よりも複雑構造の天然化合物ばかり注目されるものではありますが、その逆をいって、植物ホルモンとしても知られるエチレンの化学を、ひとつ紹介したいと思います。小さく単純なエチレンを、どうつかまえて制御するのか、最先端の化学材料が挑みます。その鍵は、植物のエチレン受容体タンパク質と同じく原子にあり!?

生理活性を持つ最も複雑な構造の天然化合物は何でしょうか。ポルフィリンのドレスをまとったコバルトの王妃が住まう紅の城 コバラミンでしょうか。32の環と98の不斉点を持ち分子量3422の最大にして最後の砦 マイトトキシンでしょうか。それとも一足飛びにペプチドホルモンのたぐいでしょうか。

では、逆に、生理活性を持つ最も単純な構造の天然有機化合物は何でしょうか。おそらく断トツのトップにランクインする物質は、植物ホルモンのエチレンだと思います。

 

生理活性物質としてのエチレンをめぐる天然のシステム

高校の化学からおなじみのエチレンは、炭素数2・水素数4の、最も単純な構造をしたアルケンです。ガス灯のそばにあった街路樹が、他よりも早く落葉したことがきっかけになって、エチレンは植物ホルモンとして知られることになりました。エチレンを主成分として含むガスが、当時のガス灯に使われていたのです。植物ホルモンのエチレンには、主として、植物の老化や果実の成熟を調節する機能があります。

エチレンでおなじみの理科実験と言えば、リンゴを使ったものでしょう。リンゴとバナナをいっしょにしておけばバナナはすぐに黒変し、リンゴとホウレンソウをいっしょにしておけばホウレンソウはすぐに黄変します。

GREEN20120606ET2.png

 

リンゴのようなクリマクテリック果実(climacteric fruit)には、成熟のクライマックスでエチレンを大量に放出する性質があります。果樹全体で成熟を揃えるためでしょうか。リンゴと同じバラ科果樹であるナシやモモに加えて、トマトやメロンなどもクリマクテリック果実に該当するとされます。

 

小さく構造も単純なエチレンですが、植物はしっかりと感知する仕組みを持っています。エチレンの受容体タンパク質は、ETR1(ETHYLENE RESPONSE 1)遺伝子産物と、その相同な遺伝子産物です。エチレンの応答が弱い変異体の探索からシロイヌナズナetr1変異型株は単離され、これによりその後ETR1タンパク質はエチレン受容体として同定されました。今ではETR1タンパク質がエチレンを認識した後、植物の成長にかかわる遺伝子の発現が変化するまで、シグナル伝達のおよその道筋も明らかになっています。

ETR1タンパク質は植物細胞の小胞体(endoplasmic reticulum)膜に分布します。エチレンの認識部位には原子が噛んでいることが分かっていますが、タンパク質結晶構造解析[1]は部分構造に対してしか行われておらず、詳しくは分かっていません。揮発化合物との共結晶、かつ膜タンパク質ということで、凄まじく難易度の高い気がしますが、腕に自信のある方は挑戦してみるとよいかもしれません。

 

GREEN20120606ET3.png

この結晶構造ではそもそも正しく折りたたまれているのか?

 

エチレンにまつわる天然のシステムについて、分かっていることをざっとまとめてきました。それではエチレンにまつわる人工のシステムではどうでしょうか、話を移したいと思います。

 

エチレンをつかまえる人工のシステム

高価なガスクロマトグラフィー質量分析機器なしにエチレンが検出できれば、便利な場面がいくつかあります。輸入バナナの追熟や、野菜倉庫で、エチレンの多寡をモニターすることができます。

ここで、エチレンをつかまえるための鍵は、先ほどのETR1タンパク質と同じく原子です。最近の研究で、次に示す銅化合物とエチレンの反応が、わりと扱いやすいことが判明しました。この銅化合物は、炭素間の多重結合の上にあるパイ電子雲に配位することができます。

GREEN20120606ET4.png

ETR1タンパク質と同じく銅原子がエチレンをつかまえる鍵

 

空気の成分に炭素間の多重結合を持つものはありません。そこで、共役系がつらなった高分子を合成し、先ほどの銅化合物を加えた結果がこちらです。銅化合物が配位する相手は、エチレンと共役系のつらなった高分子との間で拮抗します。これにより、蛍光の明暗として、エチレンの有無を検出できます[2]。

 

GREEN20120606ET5.png

共役系のつらなった高分子に銅化合物が配位すると消光[2]

 

感度をさらに高めたシステムが、電気伝導度を用いたこちらです。先ほど登場した高分子の代わりに、炭素間の多重結合にはカーボンナノチューブが採用されています。銅化合物が配位する相手は、エチレンとカーボンナノチューブとの間で拮抗します。これにより、電気の伝わりやすさで、エチレンの多寡を定量できます[3]。

 

GREEN20120606ET6.png

ここに先ほどの銅化合物を加える[3]

 

実際に、このような装置で、果実から放出されるエチレンの定量に成功しています[3]。あまりのユニークさに、植物のエチレン受容体であるETR1タンパク質も、もし人格があれば、さぞやこの生体模倣材料にはびっくり驚くことでしょう。

 

たまたま単離された分子の構造が複雑だから価値があるのか

複雑構造の決定から、精密合成といった構造有機化学的な研究は、わが国では長きにわたり伝統的に興味の中心でした。細胞毒性などありきたりな生理活性しか知られていない場合でも、合成経路に実用的な意味がまったくない場合でも、ユニークで複雑な構造を持つ化合物の合成は、合成化学のコミュニティーでは高く評価されてきました。

しかし、外部からの投与によって、究極の複雑系である生物に特異な応答を引き起こし、生命現象を制御するという観点もまた、同時に天然化合物が持つ面白みのひとつです。エチレンからマイトトキシンまで極端なものはともかくとして、その間にある頑張れば作れる難易度の天然化合物では、作って何をするのかという視点もまた、今後は意識していくべきところかもしれません。

一寸の虫ならぬ一寸のエチレンにも、五分ならぬ十分の化学が、魂を吹き込んで活躍しています。モノを取るだけではなく、その作用する仕組みを明かすことには、生体模倣材料をはじめ新たな研究分野がひそんでいることでしょう。

 

参考論文

[1] 植物のエチレン受容体ETR1の部分的な立体構造

“The structure of the signal receiver domain of the Arabidopsis thalianaethylene receptor ETR1” Hans-Joachim Muller-Dieckmann et al. Structure 1999 DOI: 10.1016/S0969-2126(00)88345-8

[2] エチレンを蛍光の明るさで検出

“Detection of Ethylene Gas by Fluorescence Turn-On of a Conjugated Polymer” Birgit Esser et al. Angew. Chem. Int. Ed. 2010 DOI: 10.1002/anie.201003899

[3] エチレンを電気の伝わりやさで検出

“Selective Detection of Ethylene Gas Using Carbon Nanotube-based Devices: Utility in Determination of Fruit Ripeness” Birgit Esser et al. Angew. Chem. Int. Ed. 2012 DOI: 10.1002/anie.201201042

 

関連書籍

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. 高収率・高選択性―信頼性の限界はどこにある?
  2. ChemDrawの開発秘話〜SciFinder連携機能レビュー
  3. 化学でカードバトル!『Elementeo』
  4. 化学研究ライフハック: Firefoxアドオンで化学検索をよりス…
  5. 第93回日本化学会付設展示会ケムステキャンペーン!Part II…
  6. Dead Endを回避せよ!「全合成・極限からの一手」⑧(解答編…
  7. セミナー「マイクロ波化学プロセスでイノベーションを起こす」
  8. オペレーションはイノベーションの夢を見るか? その3+まとめ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学療法と抗がん剤の併用で進行期非扁平非小細胞肺癌の生存期間延長
  2. 地球温暖化が食物連鎖に影響 – 生態化学量論の視点から
  3. 過酸による求核的エポキシ化 Nucleophilic Epoxidation with Peroxide
  4. 京都の高校生の学術論文が優秀賞に輝く
  5. マンダー試薬 Mander’s Reagent
  6. 世界を股にかける「国際学会/交流会 体験記」
  7. 100年前のノーベル化学賞ーリヒャルト・ヴィルシュテッター
  8. 飽和C–H結合を直接脱離基に変える方法
  9. コラボリー/Groups(グループ):サイエンスミートアップを支援
  10. オルトチタン酸テトライソプロピル:Tetraisopropyl Orthotitanate

関連商品

注目情報

注目情報

最新記事

トーマス・レクタ Thomas Lectka

トーマス・レクタ (Thomas Lectka、19xx年xx月x日(デトロイト生)-)は、米国の有…

有機合成化学協会誌2017年12月号:四ヨウ化チタン・高機能金属ナノクラスター・ジシリルベンゼン・超分子タンパク質・マンノペプチマイシンアグリコン

2017年も残すところあとわずかですね。みなさまにとって2017年はどのような年でしたでしょうか。…

イミデートラジカルを経由するアルコールのβ位選択的C-Hアミノ化反応

オハイオ州立大学・David A. Nagibらは、脂肪族アルコールのラジカル関与型β位選択的C(s…

翻訳アルゴリズムで化学反応を予測、IBMの研究者が発表

有機化学を原子や分子ではなく、単語や文と考えることで、人工知能(AI)アルゴリズムを用いて化学反応を…

細胞をつなぐ秘密の輸送路

細胞から細く長く伸びるワイヤー状の管。サイトネームやトンネルナノチューブと呼ばれるこの管は、離れた細…

IGZO

インジウム (Indium) 、ガリウム (Gallium) 、亜鉛 (Zinc) 、酸素 (Oxy…

Chem-Station Twitter

PAGE TOP