[スポンサーリンク]

化学者のつぶやき

エチレンをつかまえて

[スポンサーリンク]

 

有機化学の研究では生理活性よりも複雑構造の天然化合物ばかり注目されるものではありますが、その逆をいって、植物ホルモンとしても知られるエチレンの化学を、ひとつ紹介したいと思います。小さく単純なエチレンを、どうつかまえて制御するのか、最先端の化学材料が挑みます。その鍵は、植物のエチレン受容体タンパク質と同じく原子にあり!?

生理活性を持つ最も複雑な構造の天然化合物は何でしょうか。ポルフィリンのドレスをまとったコバルトの王妃が住まう紅の城 コバラミンでしょうか。32の環と98の不斉点を持ち分子量3422の最大にして最後の砦 マイトトキシンでしょうか。それとも一足飛びにペプチドホルモンのたぐいでしょうか。

では、逆に、生理活性を持つ最も単純な構造の天然有機化合物は何でしょうか。おそらく断トツのトップにランクインする物質は、植物ホルモンのエチレンだと思います。

 

生理活性物質としてのエチレンをめぐる天然のシステム

高校の化学からおなじみのエチレンは、炭素数2・水素数4の、最も単純な構造をしたアルケンです。ガス灯のそばにあった街路樹が、他よりも早く落葉したことがきっかけになって、エチレンは植物ホルモンとして知られることになりました。エチレンを主成分として含むガスが、当時のガス灯に使われていたのです。植物ホルモンのエチレンには、主として、植物の老化や果実の成熟を調節する機能があります。

エチレンでおなじみの理科実験と言えば、リンゴを使ったものでしょう。リンゴとバナナをいっしょにしておけばバナナはすぐに黒変し、リンゴとホウレンソウをいっしょにしておけばホウレンソウはすぐに黄変します。

GREEN20120606ET2.png

 

リンゴのようなクリマクテリック果実(climacteric fruit)には、成熟のクライマックスでエチレンを大量に放出する性質があります。果樹全体で成熟を揃えるためでしょうか。リンゴと同じバラ科果樹であるナシやモモに加えて、トマトやメロンなどもクリマクテリック果実に該当するとされます。

 

小さく構造も単純なエチレンですが、植物はしっかりと感知する仕組みを持っています。エチレンの受容体タンパク質は、ETR1(ETHYLENE RESPONSE 1)遺伝子産物と、その相同な遺伝子産物です。エチレンの応答が弱い変異体の探索からシロイヌナズナetr1変異型株は単離され、これによりその後ETR1タンパク質はエチレン受容体として同定されました。今ではETR1タンパク質がエチレンを認識した後、植物の成長にかかわる遺伝子の発現が変化するまで、シグナル伝達のおよその道筋も明らかになっています。

ETR1タンパク質は植物細胞の小胞体(endoplasmic reticulum)膜に分布します。エチレンの認識部位には原子が噛んでいることが分かっていますが、タンパク質結晶構造解析[1]は部分構造に対してしか行われておらず、詳しくは分かっていません。揮発化合物との共結晶、かつ膜タンパク質ということで、凄まじく難易度の高い気がしますが、腕に自信のある方は挑戦してみるとよいかもしれません。

 

GREEN20120606ET3.png

この結晶構造ではそもそも正しく折りたたまれているのか?

 

エチレンにまつわる天然のシステムについて、分かっていることをざっとまとめてきました。それではエチレンにまつわる人工のシステムではどうでしょうか、話を移したいと思います。

 

エチレンをつかまえる人工のシステム

高価なガスクロマトグラフィー質量分析機器なしにエチレンが検出できれば、便利な場面がいくつかあります。輸入バナナの追熟や、野菜倉庫で、エチレンの多寡をモニターすることができます。

ここで、エチレンをつかまえるための鍵は、先ほどのETR1タンパク質と同じく原子です。最近の研究で、次に示す銅化合物とエチレンの反応が、わりと扱いやすいことが判明しました。この銅化合物は、炭素間の多重結合の上にあるパイ電子雲に配位することができます。

GREEN20120606ET4.png

ETR1タンパク質と同じく銅原子がエチレンをつかまえる鍵

 

空気の成分に炭素間の多重結合を持つものはありません。そこで、共役系がつらなった高分子を合成し、先ほどの銅化合物を加えた結果がこちらです。銅化合物が配位する相手は、エチレンと共役系のつらなった高分子との間で拮抗します。これにより、蛍光の明暗として、エチレンの有無を検出できます[2]。

 

GREEN20120606ET5.png

共役系のつらなった高分子に銅化合物が配位すると消光[2]

 

感度をさらに高めたシステムが、電気伝導度を用いたこちらです。先ほど登場した高分子の代わりに、炭素間の多重結合にはカーボンナノチューブが採用されています。銅化合物が配位する相手は、エチレンとカーボンナノチューブとの間で拮抗します。これにより、電気の伝わりやすさで、エチレンの多寡を定量できます[3]。

 

GREEN20120606ET6.png

ここに先ほどの銅化合物を加える[3]

 

実際に、このような装置で、果実から放出されるエチレンの定量に成功しています[3]。あまりのユニークさに、植物のエチレン受容体であるETR1タンパク質も、もし人格があれば、さぞやこの生体模倣材料にはびっくり驚くことでしょう。

 

たまたま単離された分子の構造が複雑だから価値があるのか

複雑構造の決定から、精密合成といった構造有機化学的な研究は、わが国では長きにわたり伝統的に興味の中心でした。細胞毒性などありきたりな生理活性しか知られていない場合でも、合成経路に実用的な意味がまったくない場合でも、ユニークで複雑な構造を持つ化合物の合成は、合成化学のコミュニティーでは高く評価されてきました。

しかし、外部からの投与によって、究極の複雑系である生物に特異な応答を引き起こし、生命現象を制御するという観点もまた、同時に天然化合物が持つ面白みのひとつです。エチレンからマイトトキシンまで極端なものはともかくとして、その間にある頑張れば作れる難易度の天然化合物では、作って何をするのかという視点もまた、今後は意識していくべきところかもしれません。

一寸の虫ならぬ一寸のエチレンにも、五分ならぬ十分の化学が、魂を吹き込んで活躍しています。モノを取るだけではなく、その作用する仕組みを明かすことには、生体模倣材料をはじめ新たな研究分野がひそんでいることでしょう。

 

参考論文

[1] 植物のエチレン受容体ETR1の部分的な立体構造

“The structure of the signal receiver domain of the Arabidopsis thalianaethylene receptor ETR1” Hans-Joachim Muller-Dieckmann et al. Structure 1999 DOI: 10.1016/S0969-2126(00)88345-8

[2] エチレンを蛍光の明るさで検出

“Detection of Ethylene Gas by Fluorescence Turn-On of a Conjugated Polymer” Birgit Esser et al. Angew. Chem. Int. Ed. 2010 DOI: 10.1002/anie.201003899

[3] エチレンを電気の伝わりやさで検出

“Selective Detection of Ethylene Gas Using Carbon Nanotube-based Devices: Utility in Determination of Fruit Ripeness” Birgit Esser et al. Angew. Chem. Int. Ed. 2012 DOI: 10.1002/anie.201201042

 

関連書籍

[amazonjs asin=”4320057031″ locale=”JP” title=”植物のシグナル伝達 ―分子と応答―”][amazonjs asin=”4000065661″ locale=”JP” title=”カーボンナノチューブの挑戦 (岩波科学ライブラリー)”]
Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. ブラックマネーに御用心
  2. 企業の研究開発のつらさ
  3. “かぼちゃ分子”内で分子内Diels–Alder反応
  4. あなたの合成ルートは理想的?
  5. 医薬品の品質管理ーChemical Times特集より
  6. ブラウザからの構造式検索で研究を加速しよう
  7. 国内初のナノボディ®製剤オゾラリズマブ
  8. 電子不足トリプトファン誘導体を合成する人工酵素

注目情報

ピックアップ記事

  1. 芝哲夫氏死去(大阪大名誉教授・有機化学)
  2. 反応がうまくいかないときは冷やしてみてはいかが?
  3. 市民公開講座 ~驚きのかがく~
  4. 芳香環交換反応を利用したスルフィド合成法の開発: 悪臭問題に解決策
  5. 高硬度なのに高速に生分解する超分子バイオプラスチックのはなし
  6. 触媒的C-H活性化反応 Catalytic C-H activation
  7. 世界的性能の質量分析器開発を開始
  8. ノーベル化学賞受賞者に会いに行こう!「リンダウ・ノーベル賞受賞者会議」参加者募集中!
  9. ティム・スワガー Timothy M. Swager
  10. 6年越しで叶えた“海外と繋がる仕事がしたい”という夢

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年6月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP