[スポンサーリンク]

chemglossary

光親和性標識 photoaffinity labeling (PAL)

[スポンサーリンク]

 

芳香族アジドや芳香族ジアジリン、ベンゾフェノンなどは、光照射によって反応活性種を生じる構造として知られている。そのため、これらを導入した生理活性物質を生物やその破砕物に添加して光を照射することで、活性物質の標的タンパク質等を標識することができる。この手法を光親和性標識法と呼び、先に上げたような構造は光親和性ユニットや光親和性標識基と呼ばれる。

また、光親和性標識にはラベルしたタンパク質を検出するための検出用官能基も必要である。検出用官能基としては放射性同位元素ビオチンが主流であり、それらを導入した化合物が多く用いられている。その他、近年ではクリックケミストリーを使い、タンパク質の標識化後に検出用官能基を導入する手法も確立されてきている。

光親和性標識法は多くのタンパク質が存在する系中から、標的タンパク質を簡便に標識する方法として注目されている。そして、ケミカルバイオロジーの起こりとともに、この手法を用いて生理活性物質の標的タンパク質を標識化し、同定する試みが盛んに行われている。しかしながら、タンパク質をラベルするという目的のために、光親和性標識基には以下のような性質が求められる。

 1. 蛍光灯など日常扱う光では励起しないこと
2. 励起条件が温和で、生体成分に影響を与えないこと
3. 励起状態がタンパク質のラベルのために十分長いこと
4. 非特異的にタンパク質と結合しないこと
5. 光親和生標識基が活性に影響を与えないこと

これらの条件を完璧に満たす光親和性標識基は未だ開発されてはいない。そのため、多くの光親和性標識基の中から、使用者が自らの目的に応じて光親和性標識基を選択しなければならない。しかし、実際には以下の3つの標識基が主に使用されている。

A. Phenylazide

300nm以下のUVを照射することで活性種であるニトレンを生成する。実際にはフェニルアジドそのものを導入するのではなく、ベンゼン環をもつ物質にアジドのみ導入するケースが圧倒的に多い。
最大の利点としては、小さいために化合物へ与える影響が少ないことがあげられる。しかし欠点が多く、第一に照射するUVが短波長でなければならない。短波長のUVの照射はタンパク質を変性させるため、長時間の照射には向いていないとされる。第二に、アジドがチオールと反応するため、標的タンパク質以外のタンパク質に対して非特異的な結合を形成する場合がある。その他、不可逆的な反応のため、反応効率が低い。

B. Trifluoromethylphenyldiazirine

360nm以下のUVを照射することで活性種であるカルベンを生成する。こちらはベンゼン環を持たない化合物にフェニルジアジリンユニットを導入することも多い。
ジアジリンは比較的長波長のUV照射で励起する。カルベンはニトレンやジラジカルに比べて反応性が高いことから、短時間のUV照射で標識することができる。さらに、水と反応するため、近傍にタンパク質等がいない場合には失活することで非特異的標識を防ぐという性質も持つ。一方、短所としてはアジドに比べると構築する手間がかかることあげられる。

C. Benzophenone

360nm付近の光でビラジカルベンゾフェノンの最大の特徴は、励起が可逆的に起こることである。反応しなかった分子は元の構造に戻るため、反応効率が高いと言われている。
しかし、その大きさから化合物に与える影響が大きいことや、状況によっては構築が難しい点が短所である。また、水と反応しないことから、繰り返しUV照射をするうちに非特異的な標識をしてしまう可能性も高い。

詳細や応用例について更に詳しく知りたい方は以下のReviewやそのReferenceを参考にされたい。

参考文献、関連文献

  1.  “Recent Trends in Photoaffinity Labeling” Florence Kotzyba-Hibert et al. Angew. Chem. Int. Ed. Engl. 1995, 34, 1296-1312
  2.  “Photoaffinity Labeling and Its Application in Structural Biology” E. L. Vodovozova BIOCHEMISTRY(Moscow) 2007, Vol.72, No.1
  3.  “Recent Progress in Diazirine-Based Photoaffinity Labeling” Makoto Hashimoto et al. Eur. J. Org. Chem. 2008, 2513-2523

 

関連書籍

 

関連リンク

  • 定金研究室

 

 

らくとん

らくとん

投稿者の記事一覧

とある化学メーカーで有機合成関係の研究をしている人。一日でも早くデキる企業ケミストになることを夢見ているが、なかなか芽が出ない残念ケミスト。化学も好きだけど生物も大好きな農芸化学出身。

関連記事

  1. 熱分析 Thermal analysis
  2. 酵素触媒反応の生成速度を考えるー阻害剤入りー
  3. 深共晶溶媒 Deep Eutectic Solvent
  4. 定量PCR(qPCR ; quantitative PCR)、リ…
  5. 分子モーター Molecular Motor
  6. ステープルペプチド Stapled Peptide
  7. 動的コンビナトリアル化学 Dynamic Combinatori…
  8. mRNAワクチン(メッセンジャーRNAワクチン)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. コニア エン反応 Conia–Ene Reaction
  2. クゥイリン・ディン Kui-Ling Ding
  3. varietyの使い方
  4. 対称性に着目したモデルに基づいてナノ物質の周期律を発見
  5. サイエンスアゴラの魅力-食用昆虫科学研究会・「蟲ソムリエ」中の人に聞く
  6. 周期表の形はこれでいいのか? –その 2: s ブロックの位置 編–
  7. ベンゾ[1,2-b:4,5-b’]ジチオフェン:Benzo[1,2-b:4,5-b’]dithiophene
  8. N,N-ジメチルアセトアミドジメチルアセタール : N,N-Dimethylacetamide Dimethyl Acetal
  9. ダイセルが開発した新しいカラム: DCpak PTZ
  10. 第138回―「不斉反応の速度論研究からホモキラリティの起源に挑む」Donna Blackmond教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年12月
« 11月   1月 »
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

注目情報

最新記事

アブラナ科植物の自家不和合性をタンパク質複合体の観点から解明:天然でも希少なSP11タンパク質の立体構造予測を踏まえて

第340回のスポットライトリサーチは、東京大学 大学院農学生命科学研究科の森脇 由隆…

オンライン講演会に参加してみた~学部生の挑戦記録~

hodaです。講演会やシンポジウムのオンライン化によって学部生でもいろいろな講演会にボタンひとつで参…

令和3年度に登録された未来技術遺産が発表 ~フィッシャー・トロプシュ法や記憶媒体に関する資料が登録~

国立科学博物館は、平成20年度から重要科学技術史資料(愛称:未来技術遺産)の登録を実施しています。令…

企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介

現在、多くの企業がデジタルトランスフォーメーション(DX)による生産性向上を試みています。特に化学メ…

女子の強い味方、美味しいチョコレート作りを助ける化合物が見出される

チョコレートの製造過程でリン脂質分子を添加するという方法を用いれば、複雑なテンパリング(加熱・せん断…

火力発電所排気ガスや空気から尿素誘導体の直接合成に成功

第339回のスポットライトリサーチは、産業技術総合研究所 触媒化学融合研究センタ…

CV測定器を使ってみた

「電気化学」と聞くと、難しい数式が出てきて何やらとっつきづらいというイメージがある人が多いと思います…

知られざる法科学技術の世界

皆さんは、日本法科学技術学会という学会をご存じでしょうか。法科学は、犯罪における問題を”科学と技術”…

有機合成化学協会誌2021年9月号:ストリゴラクトン・アミド修飾アリル化剤・液相電解自動合成・ビフェニレン・含窒素複素環

有機合成化学協会が発行する有機合成化学協会誌、2021年9月号がオンライン公開されました。9…

イグノーベル賞2021が発表:今年は化学賞あり!

2021年9月9日、「人々を笑わせ考えさせた業績」に送られるイグノーベル賞の第31回授賞式が行われま…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP