[スポンサーリンク]

chemglossary

光親和性標識 photoaffinity labeling (PAL)

[スポンサーリンク]

 

芳香族アジドや芳香族ジアジリン、ベンゾフェノンなどは、光照射によって反応活性種を生じる構造として知られている。そのため、これらを導入した生理活性物質を生物やその破砕物に添加して光を照射することで、活性物質の標的タンパク質等を標識することができる。この手法を光親和性標識法と呼び、先に上げたような構造は光親和性ユニットや光親和性標識基と呼ばれる。

また、光親和性標識にはラベルしたタンパク質を検出するための検出用官能基も必要である。検出用官能基としては放射性同位元素ビオチンが主流であり、それらを導入した化合物が多く用いられている。その他、近年ではクリックケミストリーを使い、タンパク質の標識化後に検出用官能基を導入する手法も確立されてきている。

光親和性標識法は多くのタンパク質が存在する系中から、標的タンパク質を簡便に標識する方法として注目されている。そして、ケミカルバイオロジーの起こりとともに、この手法を用いて生理活性物質の標的タンパク質を標識化し、同定する試みが盛んに行われている。しかしながら、タンパク質をラベルするという目的のために、光親和性標識基には以下のような性質が求められる。

 1. 蛍光灯など日常扱う光では励起しないこと
2. 励起条件が温和で、生体成分に影響を与えないこと
3. 励起状態がタンパク質のラベルのために十分長いこと
4. 非特異的にタンパク質と結合しないこと
5. 光親和生標識基が活性に影響を与えないこと

これらの条件を完璧に満たす光親和性標識基は未だ開発されてはいない。そのため、多くの光親和性標識基の中から、使用者が自らの目的に応じて光親和性標識基を選択しなければならない。しかし、実際には以下の3つの標識基が主に使用されている。

A. Phenylazide

300nm以下のUVを照射することで活性種であるニトレンを生成する。実際にはフェニルアジドそのものを導入するのではなく、ベンゼン環をもつ物質にアジドのみ導入するケースが圧倒的に多い。
最大の利点としては、小さいために化合物へ与える影響が少ないことがあげられる。しかし欠点が多く、第一に照射するUVが短波長でなければならない。短波長のUVの照射はタンパク質を変性させるため、長時間の照射には向いていないとされる。第二に、アジドがチオールと反応するため、標的タンパク質以外のタンパク質に対して非特異的な結合を形成する場合がある。その他、不可逆的な反応のため、反応効率が低い。

B. Trifluoromethylphenyldiazirine

360nm以下のUVを照射することで活性種であるカルベンを生成する。こちらはベンゼン環を持たない化合物にフェニルジアジリンユニットを導入することも多い。
ジアジリンは比較的長波長のUV照射で励起する。カルベンはニトレンやジラジカルに比べて反応性が高いことから、短時間のUV照射で標識することができる。さらに、水と反応するため、近傍にタンパク質等がいない場合には失活することで非特異的標識を防ぐという性質も持つ。一方、短所としてはアジドに比べると構築する手間がかかることあげられる。

C. Benzophenone

360nm付近の光でビラジカルベンゾフェノンの最大の特徴は、励起が可逆的に起こることである。反応しなかった分子は元の構造に戻るため、反応効率が高いと言われている。
しかし、その大きさから化合物に与える影響が大きいことや、状況によっては構築が難しい点が短所である。また、水と反応しないことから、繰り返しUV照射をするうちに非特異的な標識をしてしまう可能性も高い。

詳細や応用例について更に詳しく知りたい方は以下のReviewやそのReferenceを参考にされたい。

参考文献、関連文献

  1.  “Recent Trends in Photoaffinity Labeling” Florence Kotzyba-Hibert et al. Angew. Chem. Int. Ed. Engl. 1995, 34, 1296-1312
  2.  “Photoaffinity Labeling and Its Application in Structural Biology” E. L. Vodovozova BIOCHEMISTRY(Moscow) 2007, Vol.72, No.1
  3.  “Recent Progress in Diazirine-Based Photoaffinity Labeling” Makoto Hashimoto et al. Eur. J. Org. Chem. 2008, 2513-2523

 

関連書籍

[amazonjs asin=”4274501973″ locale=”JP” title=”入門ケミカルバイオロジー”][amazonjs asin=”4759813799″ locale=”JP” title=”生物活性分子のケミカルバイオロジー: 標的同定と作用機構 (CSJ Current Review)”]

 

関連リンク

  • 定金研究室

 

 

Avatar photo

らくとん

投稿者の記事一覧

とある化学メーカーで有機合成関係の研究をしている人。一日でも早くデキる企業ケミストになることを夢見ているが、なかなか芽が出ない残念ケミスト。化学も好きだけど生物も大好きな農芸化学出身。

関連記事

  1. Imaging MS イメージングマス
  2. E値 Environmental(E)-factor
  3. 定量PCR(qPCR ; quantitative PCR)、リ…
  4. 機能指向型合成 Function-Oriented Synthe…
  5. 振動円二色性スペクトル Vibrational Circular…
  6. 一重項分裂 singlet fission
  7. ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert…
  8. コールドスプレーイオン化質量分析法 Cold Spray Ion…

注目情報

ピックアップ記事

  1. 光触媒でエステルを多電子還元する
  2. 芳香族メタ光環化付加 Aromatic meta-photocycloaddition
  3. メリフィールド氏死去 ノーベル化学賞受賞者
  4. ブラウンヒドロホウ素化反応 Brown Hydroboration
  5. SPhos
  6. 第32回 液晶材料の新たな側面を開拓する― Duncan Bruce教授
  7. 健康食品 高まる開発熱 新素材も続々
  8. 近況報告PartIV
  9. 条件最適化向けマテリアルズ・インフォマティクスSaaS : miHubのアップデートのご紹介
  10. トリメチルアルミニウム trimethylalminum

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年12月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP