[スポンサーリンク]

chemglossary

光親和性標識 photoaffinity labeling (PAL)

 

芳香族アジドや芳香族ジアジリン、ベンゾフェノンなどは、光照射によって反応活性種を生じる構造として知られている。そのため、これらを導入した生理活性物質を生物やその破砕物に添加して光を照射することで、活性物質の標的タンパク質等を標識することができる。この手法を光親和性標識法と呼び、先に上げたような構造は光親和性ユニットや光親和性標識基と呼ばれる。

また、光親和性標識にはラベルしたタンパク質を検出するための検出用官能基も必要である。検出用官能基としては放射性同位元素ビオチンが主流であり、それらを導入した化合物が多く用いられている。その他、近年ではクリックケミストリーを使い、タンパク質の標識化後に検出用官能基を導入する手法も確立されてきている。

光親和性標識法は多くのタンパク質が存在する系中から、標的タンパク質を簡便に標識する方法として注目されている。そして、ケミカルバイオロジーの起こりとともに、この手法を用いて生理活性物質の標的タンパク質を標識化し、同定する試みが盛んに行われている。しかしながら、タンパク質をラベルするという目的のために、光親和性標識基には以下のような性質が求められる。

 1. 蛍光灯など日常扱う光では励起しないこと
2. 励起条件が温和で、生体成分に影響を与えないこと
3. 励起状態がタンパク質のラベルのために十分長いこと
4. 非特異的にタンパク質と結合しないこと
5. 光親和生標識基が活性に影響を与えないこと

これらの条件を完璧に満たす光親和性標識基は未だ開発されてはいない。そのため、多くの光親和性標識基の中から、使用者が自らの目的に応じて光親和性標識基を選択しなければならない。しかし、実際には以下の3つの標識基が主に使用されている。

A. Phenylazide

300nm以下のUVを照射することで活性種であるニトレンを生成する。実際にはフェニルアジドそのものを導入するのではなく、ベンゼン環をもつ物質にアジドのみ導入するケースが圧倒的に多い。
最大の利点としては、小さいために化合物へ与える影響が少ないことがあげられる。しかし欠点が多く、第一に照射するUVが短波長でなければならない。短波長のUVの照射はタンパク質を変性させるため、長時間の照射には向いていないとされる。第二に、アジドがチオールと反応するため、標的タンパク質以外のタンパク質に対して非特異的な結合を形成する場合がある。その他、不可逆的な反応のため、反応効率が低い。

B. Trifluoromethylphenyldiazirine

360nm以下のUVを照射することで活性種であるカルベンを生成する。こちらはベンゼン環を持たない化合物にフェニルジアジリンユニットを導入することも多い。
ジアジリンは比較的長波長のUV照射で励起する。カルベンはニトレンやジラジカルに比べて反応性が高いことから、短時間のUV照射で標識することができる。さらに、水と反応するため、近傍にタンパク質等がいない場合には失活することで非特異的標識を防ぐという性質も持つ。一方、短所としてはアジドに比べると構築する手間がかかることあげられる。

C. Benzophenone

360nm付近の光でビラジカルベンゾフェノンの最大の特徴は、励起が可逆的に起こることである。反応しなかった分子は元の構造に戻るため、反応効率が高いと言われている。
しかし、その大きさから化合物に与える影響が大きいことや、状況によっては構築が難しい点が短所である。また、水と反応しないことから、繰り返しUV照射をするうちに非特異的な標識をしてしまう可能性も高い。

詳細や応用例について更に詳しく知りたい方は以下のReviewやそのReferenceを参考にされたい。

参考文献、関連文献

  1.  “Recent Trends in Photoaffinity Labeling” Florence Kotzyba-Hibert et al. Angew. Chem. Int. Ed. Engl. 1995, 34, 1296-1312
  2.  “Photoaffinity Labeling and Its Application in Structural Biology” E. L. Vodovozova BIOCHEMISTRY(Moscow) 2007, Vol.72, No.1
  3.  “Recent Progress in Diazirine-Based Photoaffinity Labeling” Makoto Hashimoto et al. Eur. J. Org. Chem. 2008, 2513-2523

 

関連書籍

 

関連リンク

  • 定金研究室

 

 

The following two tabs change content below.
らくとん

らくとん

とある化学メーカーで有機合成関係の研究をしている人。一日でも早くデキる企業ケミストになることを夢見ているが、なかなか芽が出ない残念ケミスト。化学も好きだけど生物も大好きな農芸化学出身。

関連記事

  1. ケミカルジェネティクス chemical genetics
  2. メカニカルスターラー
  3. ポリメラーゼ連鎖反応 polymerase chain reac…
  4. Imaging MS イメージングマス
  5. 特殊ペプチド Specialty Peptide
  6. 蓄電池 Rechargeable Battery
  7. アゾ化合物シストランス光異性化
  8. リード指向型合成 / Lead-Oriented Synthes…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マイケル・レヴィット Michael Levitt
  2. ポール・ロゼムンド Paul W. K. Rothemund
  3. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①
  4. 盧 煜明 Dennis Yuk-ming Lo
  5. バートン・ザード ピロール合成 Barton-Zard Pyrrole Synthesis
  6. iPhone7は世界最強の酸に耐性があることが判明?
  7. 研究室ですぐに使える 有機合成の定番レシピ
  8. 三枝・伊藤 インドール合成 Saegusa-Ito Indole Synthesis
  9. ホフマン脱離 Hofmann Elimination
  10. 藤田 誠 Makoto Fujita

関連商品

注目情報

注目情報

最新記事

ライトケミカル工業株式会社ってどんな会社?

ライトケミカル工業は自社製品を持たず、研究開発もしない、更に営業マンもいない独立資本の受託専門会社(…

クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

9月20日、クラリベイト・アナリティクス社から2018年の引用栄誉賞が発表されました。本賞は…

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明

第161回目のスポットライトリサーチは、早田敦 (はやた あつし)さんにお願いしました。早田…

PAGE TOP