[スポンサーリンク]

スポットライトリサーチ

カルボン酸をホウ素に変換する新手法

第86回目のスポットライトリサーチは、理化学研究所 ライフサイエンス技術基盤研究センター 分子標的化学研究チーム(細谷孝充研)落合秀紀基礎科学特別研究員にお願いしました。

同研究室では、ライブイメージングや創薬の発展を目指し、PETプローブの合成や新規有機化学方法論の開発を行なっています。最近、細谷研はロジウム触媒を用いたカルボン酸誘導体の有機ホウ素化合物への変換反応をACIE誌に報告し、プレスリリースとしても取り上げられました。以下がその論文です。

H. Ochiai, Y. Uetake, T. Niwa, T. Hosoya

Rhodium-Catalyzed Decarbonylative Borylation of Aromatic Thioesters for Facile Diversification of Aromatic Carboxylic Acids

Angew. Chem. Int., Ed. 2017, 56, 2482. DOI: 10.1002/anie.201611974

筆頭著者の落合さんについて、丹羽節 副チームリーダー・細谷孝充 チームリーダーからコメントを頂いています。

コメント(丹羽副チームリーダーより)

落合君とは京大大嶌研時代に知り合いました。その後東大福山研での研究生活を経て、強烈な有機合成マインドを身につけた彼と再会することになりました。我々のチームでは反応開発を進めていますが、基質の振り方一つを見ても、常に強く合成応用を指向しています。彼は本当に合成が大好きです。何か真剣にものつくりをしたいと言う時に、彼の高い反応&合成の知見はとても役立つはずです。今は化合物の機能である生物活性にも興味を持っているようです。今後さらに広い視野を身につけて、魅力的な分子を続々と創出してくれると期待しています。

コメント(細谷チームリーダーより)

落合君は仕事以外に関しても実に研究熱心な好青年です。とくにラーメンの味にはうるさく、美味しい店の探索には余念がありません。その何事にも強いこだわりを持つ姿勢は、普段の研究にも如実に現れており、今回の研究成果は、このような彼だからこそ見いだし、完成させることのできた、実に良い出汁の利いた内容になっていると思います。

本反応発見に関する裏話などが書かれているので、ぜひご一読下さい。

 

Q1. 今回のプレス対象となったのはどんな研究ですか?

芳香族カルボン酸を有機ホウ素化合物へと変換する手法を開発しました。

芳香族カルボン酸は多くの医薬品・天然物に見られる基本的な骨格です。これらは容易に入手が可能なので、カルボン酸を出発原料にして、多彩な誘導体化を簡便に行うことができれば、創薬分野における有用な化合物を広く供給することができると考えられます。

この誘導体化には、我々が注目しているPETプローブを始めとする分子プローブ類の開発も含まれます(関連: フッ素をホウ素に変換する触媒)。ここで、カルボン酸を有機ホウ素化合物のような反応性中間体へと導くことができれば、カルボン酸の多彩な誘導体化として強力な手法になると考えました。

この脱炭酸ホウ素化の実現に際し、Late-stageでも適用可能な温和な変換手法の確立を目指して、段階的に行う戦略を採用したのが本手法の特徴です。具体的には、カルボン酸をチオエステルへと誘導し、ここからロジウム触媒存在下、脱カルボニルホウ素化反応を行うことで、80 °Cという温和な反応条件での変換を達成しました。

今回発見した反応

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

チオエステルをカルボン酸の誘導体として選択したことだと思います。初期検討において、脱カルボニルホウ素化反応に適用可能なカルボン酸の誘導体を模索していました。

しかし、これらの脱カルボニルホウ素化反応は困難で、種々の条件検討にも関わらず原料が分解するためか効率の良い変換を達成できずにいました。万策尽きかけていた頃、学生時代に所属していた研究室の独自手法、いわゆる福山カップリング福山還元などに身近に触れていた経験から、「そうだ、チオエステルを使ってみよう!」と思い至りました。

硫黄原子と遷移金属との比較的強い相互作用がプラスの効果をもたらすのではないかという思惑もありました。ちょうど同じ時期に隣のベンチの植竹君がロジウム触媒を用いた炭素−硫黄結合の開裂を伴うホウ素化反応を検討中だったこともあり、その条件を参考にしてチオエステルの脱カルボニルホウ素化反応を試みたところ、これまでとは明らかに異なる良好な結果を与えました。「これならイケます!」とすぐさま上司に報告したのを覚えています。そこからはトントン拍子に進展し、現在の最適条件に至るまでに時間はかかりませんでした。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

今回の芳香族チオエステルの脱カルボニルホウ素化反応は、触媒毒であるはずの一酸化炭素の発生を伴いながらも触媒的に進行します。円滑に反応が進行する系を見つけることができたのは良かったのですが、なぜ触媒が失活しないのかなど、メカニズムに関してまだまだ不明な点が多いです。どうやら酢酸カリウムが失活した触媒の再生に寄与していそうだ、というところまでは分かったのですが、錯体レベルでのメカニズム解明はできていないのが現状であり、今後明らかにしたいと考えているところです。というわけで、まだ困難を乗り越えていないです(汗、、、)

 

Q4. 将来は化学とどう関わっていきたいですか?

10年後、20年後に自分が何をしているのかなんて想像もつかないですが、どんな形であれ有機化学に携わっていたいと考えています。

そして実験化学者としてできる限り現場に近いところで、可能ならば自分でフラスコに触れながら有機化学に関わるのが理想です。本当の最前線を走ることができるのはプレーヤーだと思っています。フラスコで起こっている現象を肌で感じ、結果にならない結果に一喜一憂できるのはプレーヤーの特権です。新しいアイディアが浮かんでくることが多いのも、自分で手を動かしている時なのではないか、と思います。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後まで読んでいただきありがとうございます。

今回、なんとか論文投稿にこぎつけ、無事プレスリリースまで行うことができました。改めて思うのは、自分一人ですべてを達成した訳ではないということです。研究のサポートをして頂いたチームメンバーの皆様のご協力は勿論ですが、研究に集中できる環境とそれを作って頂いた皆様のご協力あってこその結果だと思っています。皆様への感謝の気持ちを忘れず、次のプロジェクトにも引き続き全力で取り組んでいきたいと思います。

この場をお借りして、本研究に関して一緒に頑張ってくれた植竹博士、ならびに親身にご指導いただいた丹羽副チームリーダー・細谷チームリーダーに改めて心より感謝申し上げます。

 

【ご略歴】

落合秀紀(おちあいひでのり)

所属:理化学研究所 ライフサイエンス技術基盤研究センター 分子標的化学研究チーム 基礎科学特別研究員

研究テーマ:ケミカルバイオロジーを推進する合成化学の開拓
1986年愛知県名古屋市生まれ
2008年3月京都大学工学部工業化学科卒業(大嶌幸一郎教授)
2011年3月東京大学大学院薬学系研究科 修士課程 修了 (福山透教授)
2012年4月〜2014年3月日本学術振興会特別研究員(DC2)
2014年3月東京大学大学院薬学系研究科 博士(薬学)取得 (福山透教授)
2014年4月〜2016年3月 理化学研究所 ライフサイエンス技術基盤研究センター 分子標的化学研究チーム 特別研究員 (細谷孝充チームリーダー)
2016年4月より現職(細谷孝充チームリーダー)
2016年帝人ファーマ研究企画賞。

The following two tabs change content below.

Orthogonene

有機合成を専門にするシカゴ大学化学科PhD3年生です。 趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。 ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。 http://donggroup-sites.uchicago.edu/

関連記事

  1. 化学と株価
  2. ゲームを研究に応用? タンパク質の構造計算ゲーム「Foldit」…
  3. シュプリンガー・ネイチャーが3つの特設ページを公開中!
  4. 「オプトジェネティクス」はいかにして開発されたか
  5. 2013年(第29回)日本国際賞 受賞記念講演会
  6. 核酸医薬の物語3「核酸アプタマーとデコイ核酸」
  7. サムライ化学者高峰譲吉「さくら、さくら」劇場鑑賞券プレゼント!
  8. 薬物耐性菌を学ぶーChemical Times特集より

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 赤絵磁器を彩る絵具:その特性解明と改良
  2. 雷神にそっくり?ベンゼン環にカミナリ走る
  3. 「水素水」健康効果うたう表示は問題 国民生活センターが業者に改善求める
  4. トクヤマが参入へ/燃料電池部材市場
  5. マグネシウム Magnesium-にがりの成分から軽量化合物材料まで
  6. 芳香族トリフラートからアリールラジカルを生成する
  7. リチャード・シュロック Richard R. Schrock
  8. 三井化学、「環状オレフィンコポリマー(商標:アペル)」の生産能力増強を決定
  9. 株式会社ユーグレナ マザーズに上場
  10. ブレデレック オキサゾール合成 Bredereck Oxazole Synthesis

関連商品

注目情報

注目情報

最新記事

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

Chem-Station Twitter

PAGE TOP