[スポンサーリンク]

化学者のつぶやき

ホウ素-ジカルボニル錯体

[スポンサーリンク]

近年の典型元素化学では、p-ブロック元素化合物を用いた小分子の活性化や活性種の安定化に関する研究成果が相次いで報告されており、典型元素がまるで遷移金属のような振る舞いをすることに、注目が集まっています。[1]
では、配位子との錯形成の視点からも、典型元素は遷移金属のように振る舞うことができるのでしょうか?

カルボニル配位子

一酸化炭素(CO)は、炭素と酸素原子から成る二原子分子です。下図のルイス構造からわかるとおり、COは窒素(N2)の等電子体ですが、炭素と酸素の電気陰性度の差により分極しているため塩基性がN2よりも高く、遷移金属と容易に錯形成することができる最もシンプルな配位子と言えます。

 

rk06202015-1
一酸化炭素が配位した遷移金属カルボニル錯体は、大学の講義において、IRスペクトルと絡めて、σ供与・π逆供与の説明に使われる代表的な錯体で、触媒として工業的に利用されているほか、酵素の活性部位にも存在しており、また星間物質として観測された例もあるようです。[2]

遷移金属化学分野では、もはや目新しくもなんともないカルボニル錯体は、適当な前駆体にCOガスをブクブクッと注入させるだけで大抵は合成できるのですが、4-12族以外の元素においては、二分子以上のCOと直接反応した例というのはこれまでに報告されていません。

ホウ素上へのCOの直接導入

さて、ごく最近、ドイツのHolgerらのグループによって、ホウ素上に二つの一酸化炭素が配位した化合物の合成・単離に成功した、という論文が報告されていたので紹介したいと思います。

Holger Braunschweig, Rian D. Dewhurst, Florian Hupp, Marco Nutz, Krzysztof Radacki, Christopher W. Tate, Alfredo Vargas, Qing Ye, Nature 2015, 522, 327-330, DOI:10.1038/nature14489

著者らは、ボリレンを配位子に持つモリブデン錯体1aを原料とし、COをブクブクして80℃に加熱することで、ホウ素-ジカルボニル錯体を収率23%で得ることに成功しています。[3]


rk06202015-2
また、の分子構造をX線結晶構造解析によって明らかにしています(図は原著論文より)。

rk06202015-3
細かい説明は省きますが、
(i) 青い
(ii) ホウ素周りは平面三配位でsp2混成である
(iii) ホウ素のp軌道上の電子がCOのπ*軌道に流れ込んだ三中心二電子π結合をHOMOに確認することができ、これは、遷移金属カルボニル錯体で見られるd→π*逆供与と類似した電子状態とみなすことができる。

 

rk06202015-4
(iv) このような化学種には珍しく、空気中でもそこそこ安定で、5日間空気にさらしても30%しか分解しない。
といった特徴・性質を持っています。

さらに著者らは類似の反応をCr錯体1bとイソニトリルを用いて行うことで、カルボニルとイソニトリル配位子を持つ化合物3及びホウ素-ジイソニトリル化合物4の合成及び、分子構造解析にも成功しています。
rk06202015-5

rk06202015-6
実は、これまでにも、形式的に二つのCOユニットが配位した炭素及び窒素カチオン種が合成されており、分子構造まで明らかにされています。[4] ところが、これらは一酸化炭素をブクブクした反応によって合成されたものではありません。今回の成果は、二分子のCOがホウ素原子に直接配位することによって合成した典型元素-ジカルボニル化学種として初めての例であり、二つのカルボニル配位子に対してホウ素が遷移金属のように錯形成することを示した、重要な成果です。

ところで、COガスを加えていないのに3が生成しているのは、前駆体のCr金属上に配位していたCOがホウ素上に転移したためでしょう。ということは、2に含まれる二つのCOのうちの一つは、もしかしたら、Mo上から転移してきたものかもしれません。SIを見ても13Cラベル実験などはまだ行われていないようなので、反応機構のに関する詳細が今後出てくることにも期待しましょう。

 

HSAB則

さて、カルボニル配位子は「やわらかい塩基」として知られています。
で、今回紹介したような錯体化学やその他の酸・塩基間の反応において、酸や塩基の「かたさ・やわらかさ」といった概念は非常に重要です。
1960年代にR. G. PearsonによってHSAB(Hard and Soft Acidsand Bases)則 <一般に、かたい酸はかたい塩基との親和性がたかく、また軟らかい酸は軟らかい塩基との親和性がたかい> が提唱されていて、この概念は、酸・塩基間反応の熱力学的な親和性および反応速度の理解を助けてくれます。

でも、この「かたい・やわらかい」ってのが抽象的である点と(ボーダーどこやねん)、どうしてそうなの?って点が理解できないと、HSAB則って酸・塩基の分類とともに、ただただ暗記しちゃうことになりかねません。

せっかくなのでHSAB則のイメージを、今回、掴んじゃいましょう。といっても、難しいことはありません。
HSAB則に関連するKlopmanの式 [5]をおおざっぱに解釈すると、
「酸と塩基の相互作用エネルギーは、軌道相互作用と電荷相互作用によって決まる」そうです。
そのうえで、HSAB則によると、単純に、似たものどうしの相互作用はつよいってことですね。
rk06202015-7

サイズがフロンティア軌道の広がりを表してるとすると、やわらかい組み合わせ(soft & soft)の場合は、軌道の重なりが大きく両者の結び付きに効いてる感じがしますよね。
で、さらにそれぞれの中心(ゾウさんやミミズさんのハート)に+と-の電荷を置くと、かたい組み合わせ(hard & hard)の場合は、距離的に電荷相互作用が結び付きに強く影響を与えていることが理解できます。
rk06202015-8

 

 

HSAB則は、無機塩など固体試料の溶解性といった基本的な性質を理解する際に役立つだけではなく、
触媒開発における配位子の設計にも活かすことができる重要な基礎概念だと思います。

 

参考文献

  1.  (a) P. P. Power, Nature 2010, 463, 171-177. doi:10.1038/nature08634 (b) D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2011, 2, 389-399. doi:10.1039/C0SC00388C  (c) Y. Wang, G. H. Robinson, Dalton Trans. 2012, 41, 337-345. doi: 10.1039/C1DT11165E
  2. (a) P. V. Simpson, U. Schatzschneider, in Inorganic Chemical Biology: Principles, Techniques and Applications (ed. Gasser, G.) Ch.10, 309-340 (Wiley, 2014). (b) A. G. G. M. Tielens, D. H. Wooden, L. J. Allamandola, J. Bregman, F. C. Witteborn, Astrophys. J. 1996, 461, 210-222.
  3.  カルボニル配位子一つをもつホウ素化合物の合成例 H. Asakawa, K.-H. Lee, Z. Lin, M. Yamashita, Nat. Commun. 2014, 5, 4245, DOI: 10.1038/ncomms5245
  4. (a) A. Ellern, T. Drews, K. Seppelt, Z. Anorg. Allg. Chem. 2001, 627, 73-76. DOI: 10.1002/1521-3749(200101) (b) I. Bernhardi, T. Drews, K. Seppelt, Angew. Chem. Int. Ed. 1999, 38, 2232-2233. DOI: 10.1002/(SICI)1521-3773(19990802)
  5.  G. Klopman, J. Am. Chem. Soc. 1968, 90, 223-234. DOI: 10.1021/ja01004a002

 

関連書籍

 

外部リンク

 

関連記事

  1. ビュッヒ・フラッシュクロマト用カートリッジもれなくプレゼント!
  2. 光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発…
  3. Dead Endを回避せよ!「全合成・極限からの一手」①(解答編…
  4. 【追悼企画】世のためになる有機合成化学ー松井正直教授
  5. スルホキシドの立体化学で1,4-ジカルボニル骨格合成を制す
  6. ワールドクラスの日本人化学者が語る研究物語―『化学者たちの感動の…
  7. SciFinderマイスター決定!
  8. ルドルフ・クラウジウスのこと② エントロピー150周年を祝って

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【書籍】化学探偵Mr. キュリー
  2. 【速報】2010年ノーベル化学賞決定!『クロスカップリング反応』に!!
  3. 「触媒的オリゴマー化」によるポリピロロインドリン類の全合成
  4. ケムステ版・ノーベル化学賞候補者リスト【2017年版】
  5. 第10回 太陽光エネルギーの効率的変換に挑むー若宮淳志准教授
  6. 究極の二量体合成を追い求めて~抗生物質BE-43472Bの全合成
  7. 化学ベンチャーが食品/医薬/化粧品業界向けに温度検知ゲル「Thermo Tracker(サーモトラッカー)」を開発
  8. 工学的応用における小分子キラリティーの付加価値: Nature Rev. Chem. 2017-6/7月号
  9. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Part II
  10. アイディア創出のインセンティブ~KAKENデータベースの利用法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年6月
« 5月   7月 »
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

ライトケミカル工業2023卒採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

アブラナ科植物の自家不和合性をタンパク質複合体の観点から解明:天然でも希少なSP11タンパク質の立体構造予測を踏まえて

第340回のスポットライトリサーチは、東京大学 大学院農学生命科学研究科の森脇 由隆…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP