[スポンサーリンク]

化学者のつぶやき

ホウ素-ジカルボニル錯体

[スポンサーリンク]

近年の典型元素化学では、p-ブロック元素化合物を用いた小分子の活性化や活性種の安定化に関する研究成果が相次いで報告されており、典型元素がまるで遷移金属のような振る舞いをすることに、注目が集まっています。[1]
では、配位子との錯形成の視点からも、典型元素は遷移金属のように振る舞うことができるのでしょうか?

カルボニル配位子

一酸化炭素(CO)は、炭素と酸素原子から成る二原子分子です。下図のルイス構造からわかるとおり、COは窒素(N2)の等電子体ですが、炭素と酸素の電気陰性度の差により分極しているため塩基性がN2よりも高く、遷移金属と容易に錯形成することができる最もシンプルな配位子と言えます。

 

rk06202015-1
一酸化炭素が配位した遷移金属カルボニル錯体は、大学の講義において、IRスペクトルと絡めて、σ供与・π逆供与の説明に使われる代表的な錯体で、触媒として工業的に利用されているほか、酵素の活性部位にも存在しており、また星間物質として観測された例もあるようです。[2]

遷移金属化学分野では、もはや目新しくもなんともないカルボニル錯体は、適当な前駆体にCOガスをブクブクッと注入させるだけで大抵は合成できるのですが、4-12族以外の元素においては、二分子以上のCOと直接反応した例というのはこれまでに報告されていません。

ホウ素上へのCOの直接導入

さて、ごく最近、ドイツのHolgerらのグループによって、ホウ素上に二つの一酸化炭素が配位した化合物の合成・単離に成功した、という論文が報告されていたので紹介したいと思います。

Holger Braunschweig, Rian D. Dewhurst, Florian Hupp, Marco Nutz, Krzysztof Radacki, Christopher W. Tate, Alfredo Vargas, Qing Ye, Nature 2015, 522, 327-330, DOI:10.1038/nature14489

著者らは、ボリレンを配位子に持つモリブデン錯体1aを原料とし、COをブクブクして80℃に加熱することで、ホウ素-ジカルボニル錯体を収率23%で得ることに成功しています。[3]


rk06202015-2
また、の分子構造をX線結晶構造解析によって明らかにしています(図は原著論文より)。

rk06202015-3
細かい説明は省きますが、
(i) 青い
(ii) ホウ素周りは平面三配位でsp2混成である
(iii) ホウ素のp軌道上の電子がCOのπ*軌道に流れ込んだ三中心二電子π結合をHOMOに確認することができ、これは、遷移金属カルボニル錯体で見られるd→π*逆供与と類似した電子状態とみなすことができる。

 

rk06202015-4
(iv) このような化学種には珍しく、空気中でもそこそこ安定で、5日間空気にさらしても30%しか分解しない。
といった特徴・性質を持っています。

さらに著者らは類似の反応をCr錯体1bとイソニトリルを用いて行うことで、カルボニルとイソニトリル配位子を持つ化合物3及びホウ素-ジイソニトリル化合物4の合成及び、分子構造解析にも成功しています。
rk06202015-5

rk06202015-6
実は、これまでにも、形式的に二つのCOユニットが配位した炭素及び窒素カチオン種が合成されており、分子構造まで明らかにされています。[4] ところが、これらは一酸化炭素をブクブクした反応によって合成されたものではありません。今回の成果は、二分子のCOがホウ素原子に直接配位することによって合成した典型元素-ジカルボニル化学種として初めての例であり、二つのカルボニル配位子に対してホウ素が遷移金属のように錯形成することを示した、重要な成果です。

ところで、COガスを加えていないのに3が生成しているのは、前駆体のCr金属上に配位していたCOがホウ素上に転移したためでしょう。ということは、2に含まれる二つのCOのうちの一つは、もしかしたら、Mo上から転移してきたものかもしれません。SIを見ても13Cラベル実験などはまだ行われていないようなので、反応機構のに関する詳細が今後出てくることにも期待しましょう。

 

HSAB則

さて、カルボニル配位子は「やわらかい塩基」として知られています。
で、今回紹介したような錯体化学やその他の酸・塩基間の反応において、酸や塩基の「かたさ・やわらかさ」といった概念は非常に重要です。
1960年代にR. G. PearsonによってHSAB(Hard and Soft Acidsand Bases)則 <一般に、かたい酸はかたい塩基との親和性がたかく、また軟らかい酸は軟らかい塩基との親和性がたかい> が提唱されていて、この概念は、酸・塩基間反応の熱力学的な親和性および反応速度の理解を助けてくれます。

でも、この「かたい・やわらかい」ってのが抽象的である点と(ボーダーどこやねん)、どうしてそうなの?って点が理解できないと、HSAB則って酸・塩基の分類とともに、ただただ暗記しちゃうことになりかねません。

せっかくなのでHSAB則のイメージを、今回、掴んじゃいましょう。といっても、難しいことはありません。
HSAB則に関連するKlopmanの式 [5]をおおざっぱに解釈すると、
「酸と塩基の相互作用エネルギーは、軌道相互作用と電荷相互作用によって決まる」そうです。
そのうえで、HSAB則によると、単純に、似たものどうしの相互作用はつよいってことですね。
rk06202015-7

サイズがフロンティア軌道の広がりを表してるとすると、やわらかい組み合わせ(soft & soft)の場合は、軌道の重なりが大きく両者の結び付きに効いてる感じがしますよね。
で、さらにそれぞれの中心(ゾウさんやミミズさんのハート)に+と-の電荷を置くと、かたい組み合わせ(hard & hard)の場合は、距離的に電荷相互作用が結び付きに強く影響を与えていることが理解できます。
rk06202015-8

 

 

HSAB則は、無機塩など固体試料の溶解性といった基本的な性質を理解する際に役立つだけではなく、
触媒開発における配位子の設計にも活かすことができる重要な基礎概念だと思います。

 

参考文献

  1.  (a) P. P. Power, Nature 2010, 463, 171-177. doi:10.1038/nature08634 (b) D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2011, 2, 389-399. doi:10.1039/C0SC00388C  (c) Y. Wang, G. H. Robinson, Dalton Trans. 2012, 41, 337-345. doi: 10.1039/C1DT11165E
  2. (a) P. V. Simpson, U. Schatzschneider, in Inorganic Chemical Biology: Principles, Techniques and Applications (ed. Gasser, G.) Ch.10, 309-340 (Wiley, 2014). (b) A. G. G. M. Tielens, D. H. Wooden, L. J. Allamandola, J. Bregman, F. C. Witteborn, Astrophys. J. 1996, 461, 210-222.
  3.  カルボニル配位子一つをもつホウ素化合物の合成例 H. Asakawa, K.-H. Lee, Z. Lin, M. Yamashita, Nat. Commun. 2014, 5, 4245, DOI: 10.1038/ncomms5245
  4. (a) A. Ellern, T. Drews, K. Seppelt, Z. Anorg. Allg. Chem. 2001, 627, 73-76. DOI: 10.1002/1521-3749(200101) (b) I. Bernhardi, T. Drews, K. Seppelt, Angew. Chem. Int. Ed. 1999, 38, 2232-2233. DOI: 10.1002/(SICI)1521-3773(19990802)
  5.  G. Klopman, J. Am. Chem. Soc. 1968, 90, 223-234. DOI: 10.1021/ja01004a002

 

関連書籍

 

外部リンク

 

関連記事

  1. ケミカル・ライトの作り方
  2. 第6回HOPEミーティングに参加してきました:ノーベル賞受賞者と…
  3. 化学者のためのエレクトロニクス講座~フォトレジスト編
  4. (–)-Spirochensilide Aの不斉全合成
  5. 【ケムステSlackに訊いて見た④】化学系学生の意外な就職先?
  6. 脱水素型クロスカップリング重合法の開発
  7. ゼロから学ぶ機械学習【化学徒の機械学習】
  8. リガンド指向性化学を用いたGABAA受容体の新規創薬探索法の開発…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. (S,S)-(-)-2,2′-イソプロピリデンビス(4-tert-ブチル-2-オキサゾリン):(S,S)-(-)-2,2′-Isopropylidenebis(4-tert-butyl-2-oxazoline)
  2. 脳を透明化する手法をまとめてみた
  3. シュプリンガー・ネイチャーが3つの特設ページを公開中!
  4. ~祭りの後に~ アゴラ企画:有機合成化学カードゲーム【遊機王】
  5. 化学研究ライフハック:縦置きマルチディスプレイに挑戦!
  6. 水蒸気侵入によるデバイス劣化を防ぐ封止フィルム: AFTINNOVA™ -EF
  7. 染色体分裂で活躍するタンパク質“コンデンシン”の正体は分子モーターだった!
  8. Reaxys Prize 2012ファイナリスト45名発表!
  9. これからの理系の転職について考えてみた
  10. 三菱ケミカルと三井化学がバイオマス原料由来ポリエステルの関連特許に係るライセンス契約を締結

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

第174回―「特殊な性質を持つフルオロカーボンの化学」David Lemal教授

第174回の海外化学者インタビューは、デヴィッド・レマル教授です。ダートマスカレッジ化学科に所属し、…

二核錯体による窒素固定~世界初の触媒作用実現~

Tshozoです。先月このような論文がNature本誌に発表されました。窒素固定と言えばやはり筆…

有機合成化学協会誌2022年8月号:二酸化炭素・アリル銅中間体・遺伝子治療・Phaeosphaeride・(−)-11-O-Debenzoyltashironin・(−)-Bilobalide

有機合成化学協会が発行する有機合成化学協会誌、2022年8月号がオンライン公開されました。筆…

生体分子と疾患のビッグデータから治療標的分子を高精度で予測するAIを開発

第 408 回のスポットライトリサーチは、九州工業大学 情報工学府 博士後期課程…

尿酸 Uric Acid 〜痛風リスクと抗酸化作用のジレンマ〜

皆さん、尿酸値は気にしてますか? ご存知の通り、ビールやお肉に豊富に含まれるプリ…

第173回―「新たな蛍光色素が実現する生細胞イメージングと治療法」Marina Kuimova准教授

第173回の海外化学者インタビューは、マリナ・クイモヴァ准教授です。インペリアル・カレッジ・ロンドン…

Biotage Selekt のバリュープライス版 Enkel を試してみた

Biotage の新型自動フラッシュクロマトシステム Selekt のバリュープライ…

【9月開催】第1回 マツモトファインケミカル技術セミナー 有機チタン、ジルコニウムが使用されている世界は?-オルガチックスの用途例紹介-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

超分子ランダム共重合を利用して、二つの”かたち”が調和されたような超分子コポリマーを造り、さらに光反応を利用して別々の”かたち”に分ける

第407回のスポットライトリサーチは、千葉大学大学院 融合理工学府 先進理化学専攻 共生応用化学コー…

セレンディピティ:思いがけない発見・発明のドラマ

hodaです。今回は1993年に刊行され、2022年7月に文庫化された書籍について書いていき…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP