[スポンサーリンク]

O

有機トリフルオロボレート塩 Organotrifluoroborate Salt

[スポンサーリンク]

有機トリフルオロボレート塩(R-BF3)は、熱・空気・湿気に安定で扱いやすい結晶性ホウ素化合物である。

フッ素が置換した4配位型ホウ素構造をもつため、ルイス酸性を示さず、酸化条件に対し安定である。ボロン酸・ボロン酸エステルの保護体と見なすことが出来る。

有機溶媒中では安定であるが、プロトン性溶媒下にて加溶媒分解を受け、三価ホウ素種を露出する。これをそのまま鈴木クロスカップリングなどに伏すことができる。ボロン酸と違って必ず単量体で存在するので、当量関係の厳密な制御が可能。

基本文献

  • Chambers, R. D.; Clark, H. C.; Willis, C. J. J. Am. Chem. Soc. 1960, 82, 5298. DOI: 10.1021/ja01505a007
  • Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020. DOI: 10.1021/jo00115a016
  • Vedejs, E.; Fields, S. C.; Hayashi, R.; Hitchcock, S. R.; Powell, D. R.; Schrimpf, M. R. J. Am. Chem. Soc. 1999121, 2460. DOI: 10.1021/ja983555r
  • Darses, S.; Michaud, G.; Genet, J.-P. Eur. J. Org. Chem. 1999, 1875. [abstract]
  • Churches, Q. I.; Hooper, J. F.; Hutton, C. A. J. Org. Chem. 2015, 80, 5428. DOI: 10.1021/acs.joc.5b00182

<review>

反応機構

トリフルオロボレート塩は4配位アニオン性構造を持つにもかかわらず、フッ素の強力な電子求引性ゆえに求核性が弱く、トランスメタル化が遅いことで知られる。

鈴木クロスカップリングなどにおいては、加水分解して生じたボロン酸が反応に関与すると考えられている。化学種がslow-releaseされるという特性から、ホモ二量化などの副反応が少なくなる傾向がある。(参考:Angew. Chem. Int. Ed. 2010, 49, 5156.

 

反応例

カウンターカチオンをテトラアルキルアンモニウムに変更したものは、非極性有機溶媒への溶解性に優れる[1]。

organoBF3_3

無保護ペプチドカップリングへの応用[2]

organoBF3_4

溶媒の選択によって化学選択性を発現させることが可能。[3]

organoBF3_4

(+)-frondosin Bの短工程合成[4]: MacMillan触媒を用いる不斉共役付加[5]が鍵。

organoBF3_5

可視光レドックス触媒を用いるトリフルオロメチル化[6]

organoBF3_6

 

 

実験手順

有機トリフルオロボレート塩の調製法[7]:有機ボロン酸もしくはボロン酸エステルをKHF2で処理することで合成できる。

organoBF3_2

フェニルボロン酸(ca. 169 mmol)をメタノール(50 mL)に溶解し、激しく攪拌子ながら、過剰量の飽和KHF2水溶液(ca. 563 mmol)ゆっくり加える。15分後、沈殿した生成物をろ過で集め、冷メタノールで洗浄する。最小量のアセトニトリルから再結晶することで純粋なフェニルトリフルオロボレートカリウム塩を得る(25.5 g, 138 mmol, 82%)。

 

参考文献

  1. Batey, R. A.; Quach, T. D. Tetrahedron Lett. 200142, 9099. doi:10.1016/S0040-4039(01)01983-9
  2. (a) Noda, H.; Eros, G.; Bode, J. W. J. Am. Chem. Soc. 2014, 136, 5611. DOI: 10.1021/ja5018442
  3. Molander, G.A.; Sandrock, D. L. Org. Lett. 200911, 2369. DOI: 10.1021/ol900822j
  4. Reiter, M.; Torssell, S.; Lee, S.; MacMillan D. W. C. Chem. Sci. 2010, 1, 37. DOI: 10.1039/c0sc00204f
  5. Lee, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007129, 15438. DOI: 10.1021/ja0767480
  6. Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 201349, 2037. DOI: 10.1039/C3CC39235J
  7. Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020. DOI: 10.1021/jo00115a016

 

関連書籍

 

関連反応

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. パターノ・ビューチ反応 Paterno-Buchi Reacti…
  2. 向山酸化還元縮合反応 Mukaiyama Redox Conde…
  3. ベシャンプ還元 Bechamp Reduction
  4. レフォルマトスキー反応 Reformatsky Reaction…
  5. クレーンケ ピリジン合成 Kröhnke Pyridine Sy…
  6. 求電子的フッ素化剤 Electrophilic Fluorina…
  7. 2-(トリメチルシリル)エトキシカルボニル保護基 Teoc Pr…
  8. ケック ラジカルアリル化反応 Keck Radicallic A…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. お茶の水女子大学と奈良女子大学がタッグを組む!
  2. “follow”は便利!
  3. デヴィッド・クレネマン David Klenerman
  4. 2019年ノーベル化学賞は「リチウムイオン電池」に!
  5. ナノチューブ団子のときほぐしかた [テキサスMRD社の成果]
  6. 結晶作りの2人の巨匠
  7. トリメチルロック trimethyl lock
  8. グラクソ、パーキンソン病治療薬「レキップ錠」を販売開始
  9. ギース ラジカル付加 Giese Radical Addition
  10. 【読者特典】第92回日本化学会付設展示会を楽しもう!

関連商品

注目情報

注目情報

最新記事

第40回「分子エレクトロニクスの新たなプラットフォームを目指して」Paul Low教授

第40回の海外化学者インタビューは、ポール・ロウ教授です。英国ダラム大学の化学科に所属(訳注:200…

有機合成化学協会誌2019年12月号:サルコフィトノライド・アミロイドβ・含窒素湾曲π電子系・ペプチド触媒・ジチオールラジアレン

有機合成化学協会が発行する有機合成化学協会誌、2019年12月号がオンライン公開されました。…

窒化ガリウムの低コスト結晶製造装置を開発

科学技術振興機構(JST)は2019年11月15日、東京農工大学と大陽日酸と共同で進める産学共同実用…

第39回「発光ナノ粒子を用いる生物イメージング」Frank van Veggel教授

第39回の海外化学者インタビューは、フランク・ファン・ヴェッゲル教授です。カナダのブリティッシュ・コ…

ロータリーエバポレーターの回転方向で分子の右巻き、左巻きを制御! ―生命のホモキラリティーの起源に踏み込む―

第236回のスポットライトリサーチは、東京大学生産技術研究所 石井研究室で博士研究員をされていた、服…

「あの人は仕事ができる」と評判の人がしている3つのこと

仕事を辞めて、転職をしたいと思う動機の一つとして、「今の会社で評価されていない」という理由がある。し…

Chem-Station Twitter

PAGE TOP