[スポンサーリンク]

O

有機トリフルオロボレート塩 Organotrifluoroborate Salt

[スポンサーリンク]

有機トリフルオロボレート塩(R-BF3)は、熱・空気・湿気に安定で扱いやすい結晶性ホウ素化合物である。

フッ素が置換した4配位型ホウ素構造をもつため、ルイス酸性を示さず、酸化条件に対し安定である。ボロン酸・ボロン酸エステルの保護体と見なすことが出来る。

有機溶媒中では安定であるが、プロトン性溶媒下にて加溶媒分解を受け、三価ホウ素種を露出する。これをそのまま鈴木クロスカップリングなどに伏すことができる。ボロン酸と違って必ず単量体で存在するので、当量関係の厳密な制御が可能。

基本文献

  • Chambers, R. D.; Clark, H. C.; Willis, C. J. J. Am. Chem. Soc. 1960, 82, 5298. DOI: 10.1021/ja01505a007
  • Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020. DOI: 10.1021/jo00115a016
  • Vedejs, E.; Fields, S. C.; Hayashi, R.; Hitchcock, S. R.; Powell, D. R.; Schrimpf, M. R. J. Am. Chem. Soc. 1999121, 2460. DOI: 10.1021/ja983555r
  • Darses, S.; Michaud, G.; Genet, J.-P. Eur. J. Org. Chem. 1999, 1875. [abstract]
  • Churches, Q. I.; Hooper, J. F.; Hutton, C. A. J. Org. Chem. 2015, 80, 5428. DOI: 10.1021/acs.joc.5b00182

<review>

反応機構

トリフルオロボレート塩は4配位アニオン性構造を持つにもかかわらず、フッ素の強力な電子求引性ゆえに求核性が弱く、トランスメタル化が遅いことで知られる。

鈴木クロスカップリングなどにおいては、加水分解して生じたボロン酸が反応に関与すると考えられている。化学種がslow-releaseされるという特性から、ホモ二量化などの副反応が少なくなる傾向がある。(参考:Angew. Chem. Int. Ed. 2010, 49, 5156.

 

反応例

カウンターカチオンをテトラアルキルアンモニウムに変更したものは、非極性有機溶媒への溶解性に優れる[1]。

organoBF3_3

無保護ペプチドカップリングへの応用[2]

organoBF3_4

溶媒の選択によって化学選択性を発現させることが可能。[3]

organoBF3_4

(+)-frondosin Bの短工程合成[4]: MacMillan触媒を用いる不斉共役付加[5]が鍵。

organoBF3_5

可視光レドックス触媒を用いるトリフルオロメチル化[6]

organoBF3_6

 

 

実験手順

有機トリフルオロボレート塩の調製法[7]:有機ボロン酸もしくはボロン酸エステルをKHF2で処理することで合成できる。

organoBF3_2

フェニルボロン酸(ca. 169 mmol)をメタノール(50 mL)に溶解し、激しく攪拌子ながら、過剰量の飽和KHF2水溶液(ca. 563 mmol)ゆっくり加える。15分後、沈殿した生成物をろ過で集め、冷メタノールで洗浄する。最小量のアセトニトリルから再結晶することで純粋なフェニルトリフルオロボレートカリウム塩を得る(25.5 g, 138 mmol, 82%)。

 

参考文献

  1. Batey, R. A.; Quach, T. D. Tetrahedron Lett. 200142, 9099. doi:10.1016/S0040-4039(01)01983-9
  2. (a) Noda, H.; Eros, G.; Bode, J. W. J. Am. Chem. Soc. 2014, 136, 5611. DOI: 10.1021/ja5018442
  3. Molander, G.A.; Sandrock, D. L. Org. Lett. 200911, 2369. DOI: 10.1021/ol900822j
  4. Reiter, M.; Torssell, S.; Lee, S.; MacMillan D. W. C. Chem. Sci. 2010, 1, 37. DOI: 10.1039/c0sc00204f
  5. Lee, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007129, 15438. DOI: 10.1021/ja0767480
  6. Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 201349, 2037. DOI: 10.1039/C3CC39235J
  7. Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020. DOI: 10.1021/jo00115a016

 

関連書籍

 

関連反応

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ベンジジン転位 Benzidine Rearrangement
  2. ロビンソン・ガブリエルオキサゾール合成 Robinson-Gab…
  3. ローソン試薬 Lawesson’s Reagent
  4. ブレデレック試薬 Bredereck’s Reage…
  5. マンニッヒ反応 Mannich Reaction
  6. テッベ試薬 Tebbe Reagent
  7. 生体共役反応 Bioconjugation
  8. 四酸化ルテニウム Ruthenium Tetroxide (Ru…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機合成の進む道~先駆者たちのメッセージ~
  2. 光触媒による水素生成効率が3%に
  3. ケージド化合物 caged compound
  4. アノードカップリングにより完遂したテバインの不斉全合成
  5. HOW TO 分子シミュレーション―分子動力学法、モンテカルロ法、ブラウン動力学法、散逸粒子動力学法
  6. 有機合成者でもわかる結晶製品生産の最適化と晶析操作【終了】
  7. 乳がんを化学的に予防 名大大幸医療センター
  8. PL法 ? ものづくりの担い手として知っておきたい法律
  9. ストライカー試薬 Stryker’s Reagent
  10. Carl Boschの人生 その1

関連商品

注目情報

注目情報

最新記事

強塩基条件下でビニルカチオン形成により5員環をつくる

LiHMDSと弱配位性アニオン塩触媒を用いた分子内C–H挿入反応が開発された。系内で調製したリチウム…

韓国へ輸出される半導体材料とその優遇除外措置について

経済産業省は1日、日韓の信頼関係が著しく損なわれたと判断し、韓国向けの輸出管理を強化すると発表した。…

Mestre NovaでNMRを解析してみよう

日本ではJEOLのマシンが普及していることもあり、DeltaでNMRの解析をしている人が多いとは思い…

奈良坂・プラサード還元 Narasaka-Prasad Reduction

概要βヒドロキシケトンを立体選択的に還元し、syn-1,3-ジオールを与える方法。anti-1,…

CASがSciFinder-nの画期的逆合成プランナーの発表で研究・開発の生産性向上を促進

CAS launched a computer-aided retrosynthetic analy…

CRISPR(クリスパー)

CRISPRは、clustered regularly interspaced short pali…

Chem-Station Twitter

PAGE TOP