[スポンサーリンク]

化学者のつぶやき

PdとTiがVECsの反応性をひっくり返す?!

[スポンサーリンク]

Pd/Lewis酸協奏触媒を用いた新規スピロ環合成法が開発された。添加するLewis酸を変えることで[5,5]および[6,5]を作り分ける。

ビニルエチレンカーボネート(VECs)を用いた反応

近年、ビニルエチレンカーボネート(VECs)から脱炭酸により生じるPd–p–アリル種Iが多様な反応へと展開可能な反応中間体として注目を集めている(図1A)。
これまでの研究で、Iは求電子的Pd–p–アリル種として、あるいは求核的アルコキシドとして反応することが知られている。求電子的Pd–p–アリル種として振る舞う例として、Kleijらは、アニリンや水などのヘテロ原子求核剤をIに反応させることで末端あるいは内部選択的な付加反応が進行することを報告した[1]。一方、Iを求核的化学種として用いた例としては、Zhangらが報告した、Iがアルデヒドやイミンなどの求電子剤と反応し、[3+2]付加環化反応による5員環合成があげられる[2]。また、本論文の著者であるZhaoらは以前に、Iを五原子ユニットとして用い9員環合成法を開発している[3]。ごく最近Gloriusらは、Pd/NHC共触媒を用いた高立体選択的なVECsの[5+2]付加環化反応を報告した[4]
今回、Zhao教授らは、二種類のPd/Lewis酸協奏触媒存在下、オーロンとVECsとの反応において、[5,5]あるいは[6,5]スピロ複素環の選択的合成に成功したので紹介する(図1B)[5]。特筆すべき事に、Ti(OiPr)4を共触媒とした際、Iが求核的ジエノラート種IIへと変換され、四炭素ユニットとして機能するという新たなVECsの反応性が見出されている。

図1. 求電子剤あるいは求核的アルコキシドとしてのVECsの反応(A)と求核的ジエノラートとしてのVECsの反応(B)

 

Palladium-Titanium Relay Catalysis Enables Switch from Alkoxide-π-Allyl to Dienolate Reactivity for Spiro-Heterocycle Synthesis
Yang, L. C.; Tan, Z. Y.; Rong, Z. Q.; Liu, R.; Wang, Y. N.; Zhao, Y. Angew. Chem., Int. Ed.2018, 57, 7860.
DOI:10.1002/anie.201804160

論文著者の紹介


研究者:Yu Zhao
研究者の経歴:
-2002 BSc, Peking University (Prof. Limin Qi)
2003-2008 Ph.D, Boston College (Prof. Marc L. Snapper& Amir H. Hoveyda )
2009-2011 Posdoc, Massachusetts Institute of Technology(Prof. Richard R. Schrock)
2011-2017 Assistant Professor, National University of Singapore
2017- Associate Professor, National University of Singapore
研究内容:触媒反応開発と、創薬化学と材料科学への応用

論文の概要

著者らはすでに報告した9員環合成[3]をさらに展開すべく、7員環合成法の開発を狙い検討をはじめた。その際、Lewis酸触媒を添加したところ、意図せずスピロ環3が得られることを発見した(図2A)。種々検討の結果、Lewis酸としてMg(OtBu)2を用いた際、最も高い収率で[5,5]スピロ環3を与えた。一方、Ti(OiPr)4を用いた際、[6,5]スピロ環4が得られた(図2B)。

本反応は、ジアステレオ選択的に進行し、[5,5]および[6,5]スピロ環体のどちらにおいてもほぼ単一のジアステレオマーが得られる。本反応には電子豊富および電子不足芳香環をもつ1、また、アリールやアルキル基をもつ2など、幅広い基質が適用可能である。
本反応では、ルイス酸による化学選択性のスイッチングもさることながら、特にTi(OiPr)4を用いた際に[6,5]スピロ環4が得られる反応の機構に特に興味がもたれる。著者らは副生成物にエナールが得られることと、不斉チタン触媒を用いることで60%eeが発現する事実から以下の[6,5]スピロ環4生成機構を提唱した(図2C)。まず2がパラジウム(0)に酸化的付加し、脱炭酸を経てIを形成する。次にIがTi(OiPr)4と配位子交換してσ-アリルパラジウム種IIIを形成したのち、パラジウムのb–水素脱離によりジエノラートIIとなる。その後、II1-[Ti]にビニロガスマイケル付加し、続く分子内アルドール反応によって4が得られる。
以上、二種類のPd/ルイス酸協奏触媒により、VECsを用いた新規スピロ環合成法が開発された。特に、チタン触媒存在下では新たにVECsをジエノラート等化体として振る舞わせており、今後さらなるVECsを用いた新規反応開発の展開が期待できる。

図2. 基質適用範囲(A and B)と反応機構(C)

参考文献

  1. [a] Guo, W.; Martínez-Rodríguez, L.; Kuniyil, R.; Martin, E.; Escudero-Adań, E. C.; Maseras, F.; Kleij, A. W. J. Am. Chem. Soc. 2016, 138, 11970. DOI: 10.1021/jacs.6b07382[b] Cai, A.; Guo, W.; Martinez-Rodriguez, L.; Kleij, A. W. J. Am. Chem. Soc. 2016, 138, 14194. DOI: 10.1021/jacs.6b08841
  2. Khan, A.; Yang, L.; Xu, J.; Jin, L. Y.; Zhang, Y. J. Angew. Chem., Int. Ed. 2014, 53, 11257. DOI: 10.1002/anie.201407013
  3. Yang, L. C.; Rong, Z. Q.; Wang, Y. N.; Tan, J. Y.; Wang, M.; Zhao, Y. Angew. Chem., Int. Ed. 2017, 56, 2927. DOI: 10.1002/anie.201611474
  4. Singha, S.; Patra, T.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 3551. DOI: 10.1021/jacs.8b00868
  5. ほぼ同時期にKleijらは、機構的に本反応と類似した、VECsの自己カップリングによるアリル位のアルキル化を報告した。Guo, W.; Kuniyil, R.; Goḿez, J. E.; Maseras, F.; Kleij, A. W. J. Am. Chem. Soc. 2018, 140, 3981. DOI: 10.1021/jacs.7b12608
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. お”カネ”持ちな会社たち-1
  2. 貴金属触媒の活性・硫黄耐性の大幅向上に成功
  3. 金属キラル中心をもつ可視光レドックス不斉触媒
  4. 荷電π電子系が発現するジラジカル性をイオンペア形成によって制御
  5. 付設展示会に行こう!ー和光純薬編ー
  6. 有機触媒によるトリフルオロボレート塩の不斉共役付加
  7. 植物の受精効率を高める糖鎖「アモール」の発見
  8. Appel反応を用いるホスフィンの不斉酸化

注目情報

ピックアップ記事

  1. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使った設計編その2
  2. 直線的な分子設計に革新、テトラフルオロスルファニル化合物―特許性の高い化学材料としての活躍に期待―
  3. Reaxys体験レポート反応検索編
  4. Z-選択的オレフィンメタセシス
  5. シンクロトロンで実験してきました【アメリカで Ph.D. を取る: 研究の非日常の巻】
  6. 産学官若手交流会(さんわか)第19回ワークショップ のご案内
  7. プラスチックを簡単に分解する方法の開発
  8. パール・クノール ピロール合成 Paal-Knorr Pyrrole Synthesis
  9. 歯車の回転数は、当てる光次第 -触媒量のDDQ光触媒で行うベンゼンC-H結合アミノ化反応-
  10. ダウ・ケミカル、液晶パネル用化学品をアジア生産へ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年7月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP