[スポンサーリンク]

化学者のつぶやき

PdとTiがVECsの反応性をひっくり返す?!

Pd/Lewis酸協奏触媒を用いた新規スピロ環合成法が開発された。添加するLewis酸を変えることで[5,5]および[6,5]を作り分ける。

ビニルエチレンカーボネート(VECs)を用いた反応

近年、ビニルエチレンカーボネート(VECs)から脱炭酸により生じるPd–p–アリル種Iが多様な反応へと展開可能な反応中間体として注目を集めている(図1A)。
これまでの研究で、Iは求電子的Pd–p–アリル種として、あるいは求核的アルコキシドとして反応することが知られている。求電子的Pd–p–アリル種として振る舞う例として、Kleijらは、アニリンや水などのヘテロ原子求核剤をIに反応させることで末端あるいは内部選択的な付加反応が進行することを報告した[1]。一方、Iを求核的化学種として用いた例としては、Zhangらが報告した、Iがアルデヒドやイミンなどの求電子剤と反応し、[3+2]付加環化反応による5員環合成があげられる[2]。また、本論文の著者であるZhaoらは以前に、Iを五原子ユニットとして用い9員環合成法を開発している[3]。ごく最近Gloriusらは、Pd/NHC共触媒を用いた高立体選択的なVECsの[5+2]付加環化反応を報告した[4]
今回、Zhao教授らは、二種類のPd/Lewis酸協奏触媒存在下、オーロンとVECsとの反応において、[5,5]あるいは[6,5]スピロ複素環の選択的合成に成功したので紹介する(図1B)[5]。特筆すべき事に、Ti(OiPr)4を共触媒とした際、Iが求核的ジエノラート種IIへと変換され、四炭素ユニットとして機能するという新たなVECsの反応性が見出されている。

図1. 求電子剤あるいは求核的アルコキシドとしてのVECsの反応(A)と求核的ジエノラートとしてのVECsの反応(B)

 

Palladium-Titanium Relay Catalysis Enables Switch from Alkoxide-π-Allyl to Dienolate Reactivity for Spiro-Heterocycle Synthesis
Yang, L. C.; Tan, Z. Y.; Rong, Z. Q.; Liu, R.; Wang, Y. N.; Zhao, Y. Angew. Chem., Int. Ed.2018, 57, 7860.
DOI:10.1002/anie.201804160

論文著者の紹介


研究者:Yu Zhao
研究者の経歴:
-2002 BSc, Peking University (Prof. Limin Qi)
2003-2008 Ph.D, Boston College (Prof. Marc L. Snapper& Amir H. Hoveyda )
2009-2011 Posdoc, Massachusetts Institute of Technology(Prof. Richard R. Schrock)
2011-2017 Assistant Professor, National University of Singapore
2017- Associate Professor, National University of Singapore
研究内容:触媒反応開発と、創薬化学と材料科学への応用

論文の概要

著者らはすでに報告した9員環合成[3]をさらに展開すべく、7員環合成法の開発を狙い検討をはじめた。その際、Lewis酸触媒を添加したところ、意図せずスピロ環3が得られることを発見した(図2A)。種々検討の結果、Lewis酸としてMg(OtBu)2を用いた際、最も高い収率で[5,5]スピロ環3を与えた。一方、Ti(OiPr)4を用いた際、[6,5]スピロ環4が得られた(図2B)。

本反応は、ジアステレオ選択的に進行し、[5,5]および[6,5]スピロ環体のどちらにおいてもほぼ単一のジアステレオマーが得られる。本反応には電子豊富および電子不足芳香環をもつ1、また、アリールやアルキル基をもつ2など、幅広い基質が適用可能である。
本反応では、ルイス酸による化学選択性のスイッチングもさることながら、特にTi(OiPr)4を用いた際に[6,5]スピロ環4が得られる反応の機構に特に興味がもたれる。著者らは副生成物にエナールが得られることと、不斉チタン触媒を用いることで60%eeが発現する事実から以下の[6,5]スピロ環4生成機構を提唱した(図2C)。まず2がパラジウム(0)に酸化的付加し、脱炭酸を経てIを形成する。次にIがTi(OiPr)4と配位子交換してσ-アリルパラジウム種IIIを形成したのち、パラジウムのb–水素脱離によりジエノラートIIとなる。その後、II1-[Ti]にビニロガスマイケル付加し、続く分子内アルドール反応によって4が得られる。
以上、二種類のPd/ルイス酸協奏触媒により、VECsを用いた新規スピロ環合成法が開発された。特に、チタン触媒存在下では新たにVECsをジエノラート等化体として振る舞わせており、今後さらなるVECsを用いた新規反応開発の展開が期待できる。

図2. 基質適用範囲(A and B)と反応機構(C)

参考文献

  1. [a] Guo, W.; Martínez-Rodríguez, L.; Kuniyil, R.; Martin, E.; Escudero-Adań, E. C.; Maseras, F.; Kleij, A. W. J. Am. Chem. Soc. 2016, 138, 11970. DOI: 10.1021/jacs.6b07382[b] Cai, A.; Guo, W.; Martinez-Rodriguez, L.; Kleij, A. W. J. Am. Chem. Soc. 2016, 138, 14194. DOI: 10.1021/jacs.6b08841
  2. Khan, A.; Yang, L.; Xu, J.; Jin, L. Y.; Zhang, Y. J. Angew. Chem., Int. Ed. 2014, 53, 11257. DOI: 10.1002/anie.201407013
  3. Yang, L. C.; Rong, Z. Q.; Wang, Y. N.; Tan, J. Y.; Wang, M.; Zhao, Y. Angew. Chem., Int. Ed. 2017, 56, 2927. DOI: 10.1002/anie.201611474
  4. Singha, S.; Patra, T.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 3551. DOI: 10.1021/jacs.8b00868
  5. ほぼ同時期にKleijらは、機構的に本反応と類似した、VECsの自己カップリングによるアリル位のアルキル化を報告した。Guo, W.; Kuniyil, R.; Goḿez, J. E.; Maseras, F.; Kleij, A. W. J. Am. Chem. Soc. 2018, 140, 3981. DOI: 10.1021/jacs.7b12608
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アイディア創出のインセンティブ~KAKENデータベースの利用法
  2. 典型元素触媒による水素を還元剤とする第一級アミンの還元的アルキル…
  3. 分子があつまる力を利用したオリゴマーのプログラム合成法
  4. 論文コレクター必見!WindowsでPDFを全文検索する方法
  5. 静電相互作用を駆動力とする典型元素触媒
  6. ポリ塩化ビニルがセンター試験に出題されたので
  7. 冬虫夏草由来の画期的新薬がこん平さんを救う?ーFTY720
  8. 金属を超えるダイヤモンド ーボロンドープダイヤモンドー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. エチルマレイミド (N-ethylmaleimide)
  2. ウィリアム・ロウシュ William R. Roush
  3. コーンブルム酸化 Kornblum Oxidation
  4. 脱水素型クロスカップリング重合法の開発
  5. ヨアヒム・ザウアー Joachim Sauer
  6. フリードリヒ・ヴェーラー Friedrich Wohler
  7. 有機触媒によるトリフルオロボレート塩の不斉共役付加
  8. 白リン / white phosphorus
  9. <理研研究員>「論文3本」の実験データ改ざん
  10. ノーベル賞いろいろ

関連商品

注目情報

注目情報

最新記事

アルキルアミンをボロン酸エステルに変換する

不活性C(sp3)–N結合をボリル化する初めての反応が開発された。入手容易なアルキルアミンから様々な…

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

PAGE TOP