[スポンサーリンク]

化学者のつぶやき

炭素ー炭素結合を切る触媒

[スポンサーリンク]

炭素-炭素結合生成反応は、有機化合物を “組み立てる” ために最重要たる反応であり、そのため古くから膨大な研究がなされてきています。最近では環境保護意識の高まりから、単に炭素をつなぐだけでは飽き足らず、アトムエコノミーの高さや、廃棄物の少なさ、化学・位置・立体選択性に優れた反応が求められるようになっています。

炭素-炭素結合を切断して、それを多重結合に付加させることができれば、アトムエコノミーの観点からも効率的です。

炭素-炭素結合を切って組み替える反応の代表例はご存じオレフィンメタセシスです。これは二重結合を切断して組み替えることによって、新たな炭素結合を作り出します。

今回紹介するのは二重結合でなく、炭素-炭素単結合を切断して新しい炭素骨格を作り出す反応です。

 

どうやって炭素-炭素単結合を切るのか?

ところで切断、切断と言っていますが、はさみで切断するわけではありません(笑)。どのように切断するのでしょうか?まずここから簡単に説明したいと思います。

炭素-炭素結合は、数ある化学結合のなかでもかなり丈夫な部類に入ります。普通は組み替えるどころか、切ることすら出来ません。

ここで結合を切断する”はさみ”の役割をするのが、遷移金属触媒です。

以下に「酸化的付加」で切断するケースの模式図を示します。炭素-炭素結合が遷移金属(M)に酸化的付加することで、結合が切断されます。その後多重結合が配位→挿入し、還元的脱離により元の炭素化合物が付加した新しい化合物が得られます。

こうやって図で見るだけなら簡単そうなのですが、実はとんでもなく難しい反応です。

炭素-炭素二重結合の切断に比べ、単結合の切断はさらに高難度とされています。切断を起こすには、標的とする炭素-炭素結合に金属触媒が近づけなくてはなりません。通常、それはπ結合への配位によって達成されます。しかし単結合の場合、足がかりとなるπ結合が近くにないため、接近→切断の過程が起こりづらいのです。

 もちろん条件を厳しくすればなんとかなる場合もあります。しかしそうすると大抵は、何でもかんでもランダムに切ってしまう結果になります。有機化合物の骨格をつくりあげる結合を、どれもこれも切ってしまってはものづくりに使える反応にはなりません。狙った結合だけを切れる反応が必要です。

 そのための触媒や反応剤に、工夫やトリックが隠されています。最近報告された優れた研究例を以下に紹介します。

最近の優れた研究例

Junら1)は触媒量のWilkinson錯体と2-アミノピコリン存在下に、カルボニル隣接位の炭素-炭素単結合を触媒的に切断し、オレフィン交換を起こすことに成功しています。

通常このような切断は起こりませんが、2-アミノピコリンとケトンが系内で配位性イミンを形成し、そこに金属が配位して接近することで、カルボニル隣接位の結合が酸化的付加することができるようになります。

村上ら2)は、触媒量のロジウム錯体とシクロブタノンを反応させると、カルボニル基の隣でシクロブタノンが切断され、分子内環化反応が進行することを見出しました。配位性置換基を利用せずに炭素-炭素結合の切断を達成している点で、インパクトの大きな報告となっています。これはシクロブタノンが歪んでおり、結合性軌道が外に張り出しているため金属と配位しやすくなっているためです。基質にトリックがあるというわけですね。

また檜山中尾3)らは、ニッケル触媒を用いることで、シアノベンゼンの炭素-炭素結合を以下のはさみの箇所で切断し、多重結合へ挿入させて新しい化合物を作り上げることに成功しました。

 

切断される箇所の官能基がシアノ基であることがトリックです。反応機構は以下のように提唱されています。

 まずは冒頭の模式図同様、ニッケル触媒にシアノベンゼンの炭素-炭素単結合が酸化的付加します。このためにニッケル触媒が近づけなくてはならないのですが、シアノ基のπ結合があるため、特別近づきやすくなるのです。引き続いてアルキンが挿入反応して還元的脱離することにで、触媒反応が進行するのです。用いる配位子(PMe3)の選択も重要であるようです。R1, R2のサイズに違いがあると、位置選択性が発現してきます。ニッケル触媒との反発があるためです。

 酸化的付加の段階が律速段階のようで、電子豊富なアリール基を用いると反応が遅くなるという制限もありますが、とても興味深い、斬新な反応と言えるでしょう。

 以上、ごくごく簡単ではありますが、炭素-炭素単結合の切断・組み替えを行いうる触媒反応について紹介しました。より詳しく勉強したい方は”C-C bond Activation”で検索すると、関連論文が沢山出てくると思いますので、そちらをご覧頂ければとおもいます。

(2005.5.9 ブレビコミン)
(2015.2.4 cosine 加筆修正)

(※本記事は以前公開されたものを加筆修正して「つぶやき」に移行したものです)

参考文献

1) C.-H Jun et al., J. Am. Chem. Soc., 121, 880 (1999).

2) M. Murakami et al., J. Am. Chem. Soc., 124, 13976 (2002).

3) T. Hiyama et al., J. Am. Chem. Soc., 126, 13904 (2005).

・高橋 保, 菅野研一郎, 有合化, 61, 938 (2003).

 

関連書籍

[amazonjs asin=”478270707X” locale=”JP” title=”有機金属化学 (錯体化学会選書)”][amazonjs asin=”480790681X” locale=”JP” title=”有機合成のための遷移金属触媒反応”][amazonjs asin=”4807908502″ locale=”JP” title=”ハートウィグ 有機遷移金属化学(上)”]
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 尿はハチ刺されに効くか 学研シリーズの回顧
  2. JEOL RESONANCE「UltraCOOL プローブ」: …
  3. 金属イオン認識と配位子交換の順序を切替えるホスト分子
  4. STAP細胞問題から見えた市民と科学者の乖離ー後編
  5. ぱたぱた組み替わるブルバレン誘導体を高度に置換する
  6. 機械学習と計算化学を融合したデータ駆動的な反応選択性の解明
  7. 学術オンラインコンテンツ紹介(Sigma-Aldrichバージョ…
  8. 第47回天然物化学談話会に行ってきました

注目情報

ピックアップ記事

  1. 第100回―「超分子包接による化学センシング」Yun-Bao Jiang教授
  2. ペンタシクロアナモキシ酸 pentacycloanamoxic acid
  3. 解毒薬のはなし その2 化学兵器系-1
  4. オキソニウムイオンからの最長の炭素酸素間結合
  5. 危険物データベース:第6類(酸化性液体)
  6. 危ない試薬・面倒な試薬の便利な代替品
  7. 不斉触媒 Asymmetric Catalysis
  8. ナノクリスタルによるロタキサン~「モファキサン」の合成に成功~
  9. ポヴァロフ反応 Povarov Reaction
  10. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ②

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2005年5月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP