[スポンサーリンク]

化学者のつぶやき

銅触媒と可視光が促進させる不斉四置換炭素構築型C-Nカップリング反応

[スポンサーリンク]

カリフォルニア工科大学・Jonas C. PetersおよびGregory C. Fuの共同研究グループは、銅触媒を用いる塩化3級アルキルの不斉アミノ化を、高エナンチオ選択的に達成した。本反応の鍵は、カルバゾール-銅(I)錯体が可視光励起されて電子移動を起こし、還元的な炭素ラジカル生成を可能としている点にある。

“Asymmetric Copper-catalyzed C-N Cross-couplings Induced by Visible Light”
Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.*; Fu, G. C.* Science 2016, 351, 681. DOI: 10.1126/science.aad8313

問題設定と解決した点

不斉4置換炭素は生物活性天然物などに広く見られる構造単位である[1]。しかしながら遷移金属不斉触媒を用いたクロスカップリング法によってこれを構築することは難しく、背景(適用限界)としては以下の2 点が知られていた。

  1. C-N クロスカップリング反応における求電子剤は、アリールハライド・アルケニルハライド・2 級アルキルハライドに限られ、3 級アルキルハライドは用いることができなかった。
  2. ラセミ2 級アルキルハライドの不斉カップリング反応は近年開発例があるが、ラセミ3 級アルキルハライドの不斉クロスカップリング反応は達成例がない。

著者らは、ラセミ体の塩化3 級アルキルから生じる炭素ラジカルを経由し、触媒的不斉C-Nクロスカップリングを行うことで、この問題解決へとアプローチした。

技術や手法の肝

著者らが以前に報告したCu-カルバゾール錯体の光励起現象[2]を、3 級アルキルハライドと組み合わせる発想が起点となっている。すなわち、求核剤であるカルバゾールがCuと錯体を形成し、これが光によって励起される。続く電子移動により、3 級アルキルハライドから3級炭素ラジカルが生じ、最後にカップリング反応が進行することで生成物が生じることを期待した。

Nu=カルバゾールアニオンとした想定触媒サイクル(冒頭論文より引用)

 

主張の有効性検証

①反応条件の最適化

CuCl、キラルホスフィン配位子L*、LiOtBu 存在下、可視光、-40℃の条件にて不斉C-Nクロスカップリング反応を進行させることができた。銅触媒を0.25 mol%にまで下げてもエナンチオ選択性は下がらず、良好な収率で反応は進行する。また、銅・可視光・配位子L*の3つが揃っていないと反応が進行しない。また、類似骨格を有する単座ホスフィン以外では、ほぼ反応が進行しない。

②基質一般性の検討

α位の置換パタンはアルキル-アリール、アルキル-アルキルいずれでもOK。インドリン由来のアミド以外に、Weinrebアミドなども使用可能。アミン側はカルバゾール以外にインドールも用いることができる。

基質一般性の抜粋

③反応機構に関する示唆

ラセミ体原料を用いても収率50%を超過することから、速度論的光学分割ではないことがわかる。エナンチオ純品な求電子剤を用いて反応を行ったところ、未反応の求電子剤のeeは変化しないため、C-Cl 結合開裂は不可逆である(ラセミ化過程は遅い)ことが示唆される。

議論すべき点

  • アミノ化やC-Nクロスカップリングで触媒的不斉誘導を行うことは一般に難しい(配位性の高いアミンが不斉配位子をしばしば解離させるため)。この系では、ホスフィンが配位していない状態では反応が進行しないことをうまく利用している。
  • α-クロロエステル/ケトンを活用できない事情は、基質が強塩基性に不安定なためか?それともカルバゾール求核付加のバックグラウンド反応が走るためか?
  • P(m-tol)3を配位子として用いるCu-カルバゾール触媒系[2]では、可視光領域に吸収のない錯体種を介していた。一方、今回の触媒系では可視光で反応が進行する。用いる配位子によって吸収波長が大きく変わるのではと考察される。
  • アミン側の構造にかなり依存した反応なので、単純なアミンを用いても可視光励起される銅触媒の創成が次なる目標と考えられる。

次に読むべき論文は?

  • 同グループから報告されたCu/UV励起系を用いる他形式の反応[3]

参考文献

  1. Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181. doi:10.1038/nature14007
  2. (a) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012, 338, 647. DOI: 10.1126/science.1226458 (b) Bissermber, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu, G. C. Angew. Chem. Int. Ed. 2013, 52, 5129. DOI: 10.1002/anie.201301202 
  3. (a) Do, H.-Q.; Bachman, S.; Bissember, A. C.; Peters, J. C.; Fu, G. C.  J. Am. Chem. Soc. 2014, 136, 2162. DOI: 10.1021/ja4126609 (b) Ratani, T. S.; Bachman, S.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2015, 137, 13902.  DOI: 10.1021/jacs.5b08452 
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アセタールで極性転換!CF3カルビニルラジカルの求核付加反応
  2. 連続アズレン含有グラフェンナノリボンの精密合成
  3. 第33回ケムステVシンポ「研究DXとラボラトリーオートメーション…
  4. 鉄触媒を用いて効率的かつ選択的な炭素-水素結合どうしのクロスカッ…
  5. コロナワクチン接種の体験談【化学者のつぶやき】
  6. メカノケミストリーを用いた固体クロスカップリング反応
  7. 合成化学者のための固体DNP-NMR
  8. NMR Chemical Shifts ー溶媒のNMR論文より

注目情報

ピックアップ記事

  1. 第十二回ケムステVシンポ「水・有機材料・無機材料の最先端相転移現象 」
  2. ヘリウム不足いつまで続く?
  3. サムライ化学者高峰譲吉「さくら、さくら」劇場鑑賞券プレゼント!
  4. 【予告】ケムステ新コンテンツ『CSスポットライトリサーチ』
  5. イグノーベル賞2020が発表 ただし化学賞は無し!
  6. 消せるボールペンのひみつ ~30年の苦闘~
  7. フラーレンの中には核反応を早くする不思議空間がある
  8. ケージド化合物 caged compound
  9. 理系の海外大学院・研究留学記
  10. 無限の可能性を秘めたポリマー

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

野々山 貴行 Takayuki NONOYAMA

野々山 貴行 (NONOYAMA Takayuki)は、高分子材料科学、ゲル、ソフトマテリアル、ソフ…

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP