[スポンサーリンク]

化学者のつぶやき

銅触媒と可視光が促進させる不斉四置換炭素構築型C-Nカップリング反応

[スポンサーリンク]

カリフォルニア工科大学・Jonas C. PetersおよびGregory C. Fuの共同研究グループは、銅触媒を用いる塩化3級アルキルの不斉アミノ化を、高エナンチオ選択的に達成した。本反応の鍵は、カルバゾール-銅(I)錯体が可視光励起されて電子移動を起こし、還元的な炭素ラジカル生成を可能としている点にある。

“Asymmetric Copper-catalyzed C-N Cross-couplings Induced by Visible Light”
Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.*; Fu, G. C.* Science 2016, 351, 681. DOI: 10.1126/science.aad8313

問題設定と解決した点

不斉4置換炭素は生物活性天然物などに広く見られる構造単位である[1]。しかしながら遷移金属不斉触媒を用いたクロスカップリング法によってこれを構築することは難しく、背景(適用限界)としては以下の2 点が知られていた。

  1. C-N クロスカップリング反応における求電子剤は、アリールハライド・アルケニルハライド・2 級アルキルハライドに限られ、3 級アルキルハライドは用いることができなかった。
  2. ラセミ2 級アルキルハライドの不斉カップリング反応は近年開発例があるが、ラセミ3 級アルキルハライドの不斉クロスカップリング反応は達成例がない。

著者らは、ラセミ体の塩化3 級アルキルから生じる炭素ラジカルを経由し、触媒的不斉C-Nクロスカップリングを行うことで、この問題解決へとアプローチした。

技術や手法の肝

著者らが以前に報告したCu-カルバゾール錯体の光励起現象[2]を、3 級アルキルハライドと組み合わせる発想が起点となっている。すなわち、求核剤であるカルバゾールがCuと錯体を形成し、これが光によって励起される。続く電子移動により、3 級アルキルハライドから3級炭素ラジカルが生じ、最後にカップリング反応が進行することで生成物が生じることを期待した。

Nu=カルバゾールアニオンとした想定触媒サイクル(冒頭論文より引用)

 

主張の有効性検証

①反応条件の最適化

CuCl、キラルホスフィン配位子L*、LiOtBu 存在下、可視光、-40℃の条件にて不斉C-Nクロスカップリング反応を進行させることができた。銅触媒を0.25 mol%にまで下げてもエナンチオ選択性は下がらず、良好な収率で反応は進行する。また、銅・可視光・配位子L*の3つが揃っていないと反応が進行しない。また、類似骨格を有する単座ホスフィン以外では、ほぼ反応が進行しない。

②基質一般性の検討

α位の置換パタンはアルキル-アリール、アルキル-アルキルいずれでもOK。インドリン由来のアミド以外に、Weinrebアミドなども使用可能。アミン側はカルバゾール以外にインドールも用いることができる。

基質一般性の抜粋

③反応機構に関する示唆

ラセミ体原料を用いても収率50%を超過することから、速度論的光学分割ではないことがわかる。エナンチオ純品な求電子剤を用いて反応を行ったところ、未反応の求電子剤のeeは変化しないため、C-Cl 結合開裂は不可逆である(ラセミ化過程は遅い)ことが示唆される。

議論すべき点

  • アミノ化やC-Nクロスカップリングで触媒的不斉誘導を行うことは一般に難しい(配位性の高いアミンが不斉配位子をしばしば解離させるため)。この系では、ホスフィンが配位していない状態では反応が進行しないことをうまく利用している。
  • α-クロロエステル/ケトンを活用できない事情は、基質が強塩基性に不安定なためか?それともカルバゾール求核付加のバックグラウンド反応が走るためか?
  • P(m-tol)3を配位子として用いるCu-カルバゾール触媒系[2]では、可視光領域に吸収のない錯体種を介していた。一方、今回の触媒系では可視光で反応が進行する。用いる配位子によって吸収波長が大きく変わるのではと考察される。
  • アミン側の構造にかなり依存した反応なので、単純なアミンを用いても可視光励起される銅触媒の創成が次なる目標と考えられる。

次に読むべき論文は?

  • 同グループから報告されたCu/UV励起系を用いる他形式の反応[3]

参考文献

  1. Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181. doi:10.1038/nature14007
  2. (a) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012, 338, 647. DOI: 10.1126/science.1226458 (b) Bissermber, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu, G. C. Angew. Chem. Int. Ed. 2013, 52, 5129. DOI: 10.1002/anie.201301202 
  3. (a) Do, H.-Q.; Bachman, S.; Bissember, A. C.; Peters, J. C.; Fu, G. C.  J. Am. Chem. Soc. 2014, 136, 2162. DOI: 10.1021/ja4126609 (b) Ratani, T. S.; Bachman, S.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2015, 137, 13902.  DOI: 10.1021/jacs.5b08452 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Hybrid Materials 2013に参加してきました!
  2. 単一分子の電界発光の機構を解明
  3. GRE Chemistry 受験報告 –試験当日·結果発表編–
  4. メソポーラスシリカ(1)
  5. オープンアクセス論文が半数突破か
  6. 活性が大幅に向上したアンモニア合成触媒について
  7. 電子実験ノートSignals Notebookを紹介します ②
  8. 薬物耐性菌を学ぶーChemical Times特集より

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. モンサント酢酸合成プロセス Monsanto Process for Acetic Acid Synthesis
  2. 米国もアトピー薬で警告 発がんで藤沢製品などに
  3. 不安定な合成中間体がみえる?
  4. ウルマンエーテル合成 Ullmann Ether Synthesis
  5. 3Mとはどんな会社? 2021年版
  6. 住友化学、液晶関連事業に100億円投資・台湾に新工場
  7. 2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」
  8. 速報・常温常圧反応によるアンモニア合成の実現について
  9. メラトニン melatonin
  10. 目が見えるようになる薬

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

注目情報

最新記事

高分子固体電解質をAIで自動設計

第XXX回のスポットライトリサーチは、早稲田大学 先進理工学部 応用化学科 小柳津・須賀研究室の畠山…

スクショの友 Snagit

スクリーンショット(スクショ)は、手軽に画像や図をコピーすることができ、資料作成などにおいて便利な機…

第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!

こんにちは、今回第28回Vシンポの運営&司会を務めさせていただくMacyです、よろしくお願い…

量子アルゴリズム国際ハッカソンQPARC Challengeで、で京都大学の学生チームが優勝!!

そこかしこで「量子コンピュータ」という言葉を聞くようになった昨今ですが、実際に何がどこまでできるのか…

Nature主催の動画コンペ「Science in Shorts」に応募してみました

以前のケムステ記事で、Springer Nature社が独・メルク社と共同で、動画コンペ「Scien…

クオラムセンシング阻害活性を有する新規アゾキシアルケン化合物の発見―薬剤耐性菌の出現を抑える感染症治療薬への応用に期待―

第405回のスポットライトリサーチは、広島大学大学院統合生命科学研究科 生物工学プログラム 細胞機能…

【著者インタビュー動画あり!】有機化学1000本ノック スペクトル解析編

今年4月に発売された書籍で、発売記念著者インタビュー動画も発売前に撮影したのですが、書籍の到…

Dihydropyridazinone環構造を有する初の天然物 Actinopyridazinoneを発見 ~微生物の持つヒドラジン生合成経路の多様性を解明~

第404回のスポットライトリサーチは、北海道大学 大学院薬学研究院 天然物化学研究室の有馬 陸(あり…

化学企業のグローバル・トップ50が発表【2022年版】

The world’s chemical industry didn’t just gr…

常温常圧アンモニア合成~20年かけて性能が約10000倍に!!!

Tshozoです。先日ChemRxivに、東京大学西林研究室による最新の触媒成果が発表されました…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP