[スポンサーリンク]

一般的な話題

有機反応を俯瞰する ーシグマトロピー転位

[スポンサーリンク]

シグマトロピー転位は、π 結合の移動にともなって、それと超共役していた σ 結合の位置がトロピー (ギリシャ語で「変化」の意味) する反応です。この種の反応は、典型的な有機反応のような「求核剤が求電子剤を攻撃する」という機構とは異なっていることについて、お話しします。

求電子剤と求核剤を定義できない?

まず、シグマトロピー転位の最も単純な例としてCope 転位の反応式を下に示します。

2016-09-14_09-45-43

反応の形式に注目すれば、1つの σ 結合がで示した位置に移動して、それに伴って二重結合の位置も動いていることがわかります。このようにシグマ (σ 結合) の位置がトロピー (ギリシャ語で「変化する」の意味) していることから、この種の反応はシグマトロピー転位と呼ばれます。

この反応の機構を書く方法として、下の式のように電子の動きを表す巻矢印を環状に回して表すことができます。ところが、巻矢印を右回りに書いても左回りに書いても生成物の構造とつじつまが合ってしまい、いわゆる求核剤と求電子剤を定義できません。

2016-09-14_09-46-08

反応機構?

典型的な有機反応は、求核剤が求電子剤に攻撃するというメカニズムですが、この反応はそのような機構とは異なっているようです。

電子が共役系を介して伝わる

この反応のメカニズムを理解するには、遷移状態の立体配座を書いてみたほうがしっくりきます。

2016-09-14_09-47-05

この遷移状態の図における点線は、「σ 結合電子の存在情報が共役系を介して伝わる」様子を表しています。具体的に言うなら、σ 結合と π 結合が平行に並ぶことで、共役系の端で互いに向き合っている p軌道の間に新たな σ 結合が形成され、それと同時に平行に並んでいた元の σ 結合と隣接する p 軌道から π結合が生じるといった具合でしょうか。

次に述べることは私の勝手なイメージですが、この反応は「σ 結合が π 軌道と平行に並ぶことで、あたかもトンネル効果のように σ 結合電子の存在情報 (波動関数) が共役系を介して伝わり、σ-π 共役系の電子が再配列される」ものだと考えられます。とにかくこの反応には量子力学の原理が働いています。

シグマトロピー転位の分類

続いて、他のシグマトロピー転位も見ていきたいと思うのですが、その前に転位反応の分類の仕方について簡単にお話しします。

2016-09-14_09-47-58

上に示した Cope 転位は σ 結合の位置が出発する原子から見て、3 位と 3 位の原子に移動するため [3,3] シグマトロピー転位に分類されます。これを一般化すると、出発する原子から見て、m 位とn 位に新たな σ 結合が形成されるものを [m,n] シグマトロピー転位と表現するわけです。この分類形式の言葉を借りれば、Cope 転位は「遷移状態に形成される環の構成原子が全て炭素原子であるような [3,3] シグマトロピー転位である」と説明できます。

[2,3] シグマトロピー転位

では[3,3] 以外のシグマトロピー転位の例としてどんなものがあるかというと、[2,3]-Wittig 転位が挙げられます

2016-09-14_09-48-27

この反応では、遷移状態が 6 員環ではなく 5 員環構造ですが、電子的に見ると同じです。すなわち、Cope 転位では π 電子であったところの 2 電子が、カルボアニオンのローンペア 2 電子に置き換わっているだけで、σ 結合が共役系を伝わっていく様子はよく似ています。

シグマトロピー転位を俯瞰する

[m,n] シグマトロピー転位を鍵段階に含む反応はいくつもありますが、それらの反応の様子自体は変わりません。そして反応に関与する分子鎖の構成原子がヘテロ原子であっても構いません。そもそも求核剤と求電子剤を定義できないため、分子鎖での π 結合と σ 結合の並び方のみが重要になるからです。

それでは、それらのシグマトロピー転位を含む反応をいくつか紹介します。それらは、「(1) 転位を起こす前の基質の構成原子」あるいは「 (2) 何が反応を駆動するか」が異なるだけです。

最初に紹介したCope 転位の例は出発物と生成物が同じであるため、可逆反応でした。しかし、適切な位置にヒドロキシ基を持つ基質では、続いてケトエノール互変異性によって結合の強いカルボニル基が形成し、反応が不可逆的に進行します (Oxy-Cope 転位)。2016-09-14_09-48-45

一方、分子鎖中に酸素を含み、 C-O σ 結合が共役端の C-C 間へと移動するタイプのものが Claisen 転位です。この反応では、カルボニル基が形成されることが生成系を有利にしています。

2016-09-14_09-49-13

このように基質中にO, S, N 原子などのヘテロ原子を含む場合には、強い結合の形成が駆動力となって反応が進行します。

というわけで、今回、シグマトロピー転位をいくつか紹介しました。これらの反応は、「環状の遷移状態から σ 結合が共役系を介して移動する」というもので、σ 結合や π 結合の立体的配置をイメージしておけばその反応の類似性が理解しやすくなると思います。以下に、[3,3] および [2,3] シグマトロピー転位を鍵段階に含む反応の簡単なスキームとその駆動力をまとめました。

反応名 (1) 基質の構造

(2) 反応の駆動力

Cope 転位 (1) 1,5-ジエン

(2) 多置換オレフィンの生成、出発物のひずみ

2016-09-14_09-49-51
oxy-Cope 転位 (1) 1,5-ジエン-3-オール

(2) ケトエノール互変異性によるカルボニル基の生成

2016-09-14_09-50-20
(脂肪族) Claisen 転位 (1) アリルビニルエーテル

(2) カルボニル基の生成

2016-09-14_09-50-40
Carroll 転位 (1) β-ケトアリルエステル

(2) カルボニル基の生成、続く脱炭酸

2016-09-14_09-51-02
(芳香族) Claisen 転位 (1) アリルアリールエーテル

(2) 芳香族性の再生

%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-24-23-30-13
[2,3] Wittig 転位

(1) アリルアルキルエーテルの脱プロトン化で生じるカルボアニオン

(2) 酸素アニオン(アルコキサイド)の生成

2016-09-14_09-52-40
Mislow-Evans 転位 (1) アリルスルホキシド

(2) 求核剤による生成物アリルスルフェナートの捕捉

2016-09-14_09-53-05

関連反応

本連載の過去記事はこちら

関連書籍

やぶ

やぶ

投稿者の記事一覧

PhD候補生として固体材料を研究しています。学部レベルの基礎知識の解説から、最先端の論文の解説まで幅広く頑張ります。高専出身。

関連記事

  1. 『元素周期 ~萌えて覚える化学の基本~』がドラマCD化!!!
  2. Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応
  3. Merck Compound Challengeに挑戦!【エント…
  4. 化学のうた
  5. 米国へ講演旅行へ行ってきました:Part II
  6. (+)-マンザミンAの全合成
  7. ヒト胚研究、ついに未知領域へ
  8. 東レ先端材料シンポジウム2011に行ってきました

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 柔軟な小さな分子から巨大環状錯体を組み上げる ~人工タンパク質への第一歩~
  2. ここまで進んだ次世代医薬品―ちょっと未来の薬の科学
  3. 2020年ノーベル化学賞は「CRISPR/Cas9ゲノム編集法の開発」に!SNS予想と当選者発表
  4. デュボア アミノ化反応 Du Bois Amination
  5. アルコールを空気で酸化する!
  6. 資生堂企業資料館
  7. 水素ガス/酸素ガスで光特性を繰り返し変化させる分子
  8. 室温で緑色発光するp型/n型新半導体を独自の化学設計指針をもとにペロブスカイト型硫化物で実現
  9. STAP細胞問題から見えた市民と科学者の乖離ー前編
  10. 触媒表面の化学反応をナノレベルでマッピング

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年9月
« 8月   10月 »
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

注目情報

最新記事

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

みなさんは毎年何本の研究申請書を書きますか?そして、残念ながら日の目を見ずに、アイデアのままパソコン…

フラーレン〜ケージを拡張、時々、内包〜

トリアジン誘導体とN-フェニルマレイミドを用いた、フラーレンのケージを拡張する新規手法が開発された。…

エキノコックスにかかわる化学物質について

Tshozoです。40年以上前、手塚治虫氏の作品「ブラック・ジャック」でこういう話が載ってい…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP