[スポンサーリンク]

化学者のつぶやき

バイオ触媒によるトリフルオロメチルシクロプロパンの不斉合成

[スポンサーリンク]

バイオ触媒「ミオグロビン」により”トリフルオロメチルカルベン”をオレフィンに転移させる、新奇トリフルオロメチルシクロプロパンの効率的不斉合成法が開発された。

バイオ触媒カルベン転移反応

トリフルオロメチルシクロプロパンは3員環とトリフルオロメチル基の有する立体的および電子的にユニークな特徴を併せ持つため、創薬化学の分野において大変魅力的な構造である。そのため、生理活性分子に本構造を導入する手法が種々検討されてきたが、その大部分は予めトリフルオロメチル基を有する出発原料を用いるものである。

一方で、本構造の最も直截的な合成法は、トリフルオロメチルカルベンのオレフィンへの挿入反応である。”トリフルオロメチルカルベン”はCF 3 CHN 2 (DTE)の光分解(図1A)1や金属触媒により発生させる。本反応の不斉制御に取り組んだ最初の報告は、Simmoneauxらによるキラルメタロポルフィリンを用いたDTEとスチレンのシクロプロパン化反応であるが、高ジアステレオ選択的に進行するものの中程度のエナンチオ選択性(30-79 %ee)であった(図1B)2。近年、CarreiraらによってCo(III)-サレン錯体を用いた同様の反応にて高いエナンチオ選択性(<97 %ee)が達成されている (図1C)3

今回、米国ロチェスター大学のFasan助教授らは、バイオ触媒「ミオグロビン(Mb)」を用いた、DTEとビニルアレーンのトリフルオロメチルシクロプロパンの不斉合成に挑戦した。その結果、高収率かつ高ジアステレオ選択的、高エナンチオ選択的なバイオ触媒カルベン転移反応の開発に成功したので紹介する(図1D)。

図1. トリフルオロメチルカルベンとオレフィンのシクロプロパン化反応

 

Highly Diastereo- and Enantioselective Synthesis of Trifluoromethyl- Substituted Cyclopropanes via Myoglobin-Catalyzed Transfer of Trifluoromethylcarbene

Antonio, T.; Viktoria, S.; Vikas, T.; Rudi, F. J. Am. Chem. Soc.2017, 139, 5293−5296.

DOI: 10.1021/jacs.7b00768

論文著者の紹介

研究者:Rudi Fasan

研究者の経歴:
-1999 BSc, University of Padua, Italy
2001-2005 Ph.D, University of Zurich, Switzerland
2005-2008 Posdoc, California Institute of Technology, Pasadena, CA
2008- Assistant Prof. at University of Rochester, United States

研究内容:生化学合成および生理活性物質の開発

論文の概要

Fasanらは、ジアゾ酢酸エチル(EDA)をカルベン供与試薬としたMb触媒によるオレフィンシクロプロパン化の不斉合成法をすでに開発しており、本研究はその発展系である4

まず、2,2,2-トリフルオロエチルアミン(1)のジアゾ化によるDTEのin situ生成(亜硝酸ナトリウム/硫酸)は、バイオ触媒には過酷な条件である。そのため、「試薬生成チャンバー」、すなわち、DTEを不活性ガスとともにMb触媒を含む反応容器へと運ぶ反応システムを構築した (図2A)。このシステムを用いた条件検討は、反応の進行が確約されているEDAを用いて行った (図2B)。その結果、Mb(H64V, V64A)変異体を発現する大腸菌(E.coli)細胞の懸濁液をバイオ触媒系として使用し、当量・反応時間を最適化することで、高収率・高ジアステレオ・高エナンチオ選択的に目的化合物6を得ることができた。

そこで、本条件をEDAからDTEに変更したところ、EDAの場合と同様に反応は進行し、トリフルオロメチルシクロプロパン6の不斉合成に成功した。本反応は様々なアリールオレフィン8a–12aに適用可能であり、概ね良好な収率および高エナンチオ選択的に目的化合物8b–12bを与える(図2C)。また、本反応はエナンチオマーの作り分けも可能であり、Mb(H64V, V64A)変異体を用いた場合はtrans-(1S, 2S)体、Mb(H64V、V68L、L29T)変異体ではtrans-(1R, 2R)体に変換することができる。

以上、今回の論文は、Mb触媒をもちいて創薬化学分野で高価値なトリフルオロメチルシクロプロパンの不斉合成を実現した。強酸性条件で調製するDTEを反応系外で発生・運搬する効率的な反応システムを開発し、バイオ触媒の弱点を補うことで、長所である高選択性のみを活用した好例である。

図2. Mb触媒とDTEによるトリフルオロメチルシクロプロパンの不斉合成

参考文献

  1. Atherton, J. H.; Fields, R. J. Chem. Soc. C 1967, 1450. DOI: 10.1039/J39670001450
  2. Le Maux, P.; Juillard, S.; Simonneaux, G. Synthesis 2006, 2006, 1701. DOI: 1055/s-2006-926451
  3. Morandi, B.; Mariampillai, B.; Carreira, E. M. Angew, Chem., Int. Ed. 2011, 50, 1101. DOI: 10.1002/anie.201004269
  4. Bordeaux, M.; Tyagi, V.; Fasan, R. Angew,  Chem., Int. Ed. 2015, 54, 1744. DOI: 10.1002/anie.201409928
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 今年も出ます!サイエンスアゴラ2014
  2. リガンド革命
  3. PACIFICHEM2010に参加してきました!④
  4. 副反応を起こしやすいアミノ酸を迅速かつクリーンに連結する
  5. 有機合成化学協会誌2018年5月号:天然物化学特集号
  6. 細孔内単分子ポリシラン鎖の特性解明
  7. 化学の学びと研究に役立つiPhone/iPad app 9選
  8. アメリカで Ph.D. を取る –エッセイを書くの巻– (前編)…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【悲報】HGS 分子構造模型 入手不能に
  2. TriBOT ~1分子が3倍活躍するベンジル化試薬~
  3. スケールアップで失敗しないために
  4. 科学の未解決のナゾ125を選出・米サイエンス誌
  5. ビス(アセトニトリル)パラジウム(II)ジクロリド : Dichlorobis(acetonitrile)palladium(II)
  6. マルコ・ラム脱酸素化 Marko-Lam Deoxygenation
  7. 2005年9-10月分の気になる化学関連ニュース投票結果
  8. 研究者目線からの論文読解を促す抄録フォーマット
  9. マッチ博物館
  10. ブレデレック オキサゾール合成 Bredereck Oxazole Synthesis

関連商品

注目情報

注目情報

最新記事

リチウム金属電池の寿命を短くしている原因を研究者が突き止める

リチウムリオンバッテリー(リチウムイオン二次電池)はPCやスマートフォンなどの電子機器に利用されてい…

研究室でDIY!~エバポ用真空制御装置をつくろう~ ③

さて、前回に引き続いて、「エバポ用真空制御装置の自作」に挑戦しています。前回までの記事では、…

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催さ…

特長のある豊富な設備:ライトケミカル工業

1. 高粘度撹拌、高温・高圧・高真空に対応可能な反応釜高粘度でも撹拌できる大容量攪拌機と効率用除…

ライトケミカル工業2021年採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

中高生・高専生でも研究が学べる!サイエンスメンタープログラム

研究室に入って本格的な研究を始めるのは、大学4年生からが一般的。でも最近は、中高生が研究に取り組める…

Chem-Station Twitter

PAGE TOP