[スポンサーリンク]

スポットライトリサーチ

ゾル-ゲル変化を自ら繰り返すアメーバのような液体の人工合成

[スポンサーリンク]

第113回のスポットライトリサーチは、東京大学大学院工学系研究科博士後期課程2年の小野田 実真(おのだ みちか)さんにお願いしました。

小野田さんの所属する吉田・秋元研究室は、新たな高分子ゲル(ソフトマテリアル)を創製する研究におけるトップランナーと言える研究室です。主に、高分子ゲルを用いたバイオミメティクス、すなわち、生体における機能を代替・模倣する材料やシステムを高分子ゲルを使って人工的に設計・構築する研究が展開されています。

今回インタビューさせていただいた小野田さんは、新しく、かつとってもユニークな高分子ゲルの開発に成功しました。

研究成果がプレスリリースされたことをきっかけに、スポットライトリサーチへの寄稿をお願いしました。

Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition

Michika Onoda, Takeshi Ueki, Ryota Tamate, Mitsuhiro Shibayama & Ryo Yoshida

Nature Commun. 2017, 8, 15862.  DOI:10.1038/ncomms15862

小野田さんに対し、指導教員であられる吉田先生からコメントを頂いております。

小野田君は非常に勢いのある優れた学生で、私はただただ驚かされてばかりです。彼は中学時代に陸上競技で全国一位になり高校へスポーツ進学したものの、後に大怪我をして勉学の道に切り替えた苦労人です。それもあってか、研究に対する自分への厳しさ・熱意・体力・行動力のどれをとっても他人を圧倒するものがあります。ゾル-ゲル振動実現のためにABC型トリブロック共重合体を使おう、というのは膨大な試行錯誤の末に辿り着いた彼自身のアイデアです。この研究は彼だからこそ成し得たものでしょう。どんどん道を切り開いていく彼の将来に期待しています。

吉田 亮

とても夢を感じる研究です。筆者の専門とは少し違う分野の研究でしたが、今後も注目していきたいと思いました。また、小野田さんは東大発ベンチャーであるナノティス株式会社の共同創業者であり取締役CTOでいらっしゃるそうです。小野田さんのマルチな活躍にも期待してます!それではインタビューをどうぞ。

Q1. 今回のプレスリリース対象となったのはどんな研究ですか?簡単にご説明ください。

アメーバのような液体を創りました、という研究です。アメーバはゾルになったりゲルになったりすることで運動しているのですが、これはアクチンという生体高分子が集合と分散を繰り返すことで実現されています。今回の研究では、アクチンに代わって合成高分子がひとりでに集合と分散を繰り返す系を構築しました。外から電気・光・温度変化などを与えずとも、ひとりでにゾルになったりゲルになったりする液体を創ることに成功しました。この結果は、アクチンの機能の一部を人工模倣することに成功したといえます。また、ゾルゲル振動はアメーバ運動以外にもがん細胞の転移・傷の修復・細胞分裂等でもよく見られる現象であり、こうした生命挙動を理解するモデルとなり得ます。将来的には、SF映画で描かれてきたような、自律性を持つソフトマシンを創るのに繋がるかもしれません。

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

まさに、分子設計そのものです。この研究では、BZ反応(こちらのケムステ記事参照)による自律的な酸化-還元振動を高分子の集合-分散振動に変換し、更に、その集合-分散が高分子ゲルの形成-崩壊に対応するように材料を設計しています。酸化された高分子がゾル、還元された高分子がゲルになるように分子設計すればよいのですが、非平衡系ではそう単純ではありません。例えば、BZ反応の振動周期と高分子網目の再形成/再崩壊のキネティクスがうまく一致するようにする必要があります。これを実現するために、高分子のマルチセグメント化を施し、条件に適合する最適解を模索しました。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

とにかく、最適な高分子配列を見つけるのに苦労しました。考えるべきパラメータが余りにも多かったのです。色々な分子配列を試しましたが、修士課程の2年間に設計した高分子のほぼ全ては失敗に終わり、暗中模索の日々でした。

最終的には、ゲルが形作られる中間構造に注目し、理論・シミュレーション・実験の観点から「異なる機能と異なる分子量をもつ3種類の高分子を直線状に連結させた”ABC型トリブロック共重合体”が最適」と予想するに至りました。そして、各高分子中のモノマー配列や分子量を綿密に設計し、リビングラジカル重合による精密合成に成功しました。ここで、室温付近ではゲルの形成力(架橋点の固さ)を十分に確保しつつ、冷蔵庫内温度では水に極めて良く溶けるようにしたのが隠れたポイントです。これによって、大量の高分子がほんの少しの水にぱっと溶けるようになり、最適条件の模索が格段に簡単になりました。実験現場のカンと理論がうまく結びついたことで今回の結果に繋がりました。

 

Q4. 将来は化学とどう関わっていきたいですか?

たとえ「それ何の役に立つの?」と言われたとしても、自分の「面白い」をとことん追求し続ける化学者でありたいです。私にとって研究活動は幾らでも没頭できる趣味のようなもので、そんな研究をアカデミアの立場で生涯取り組めたら、こんなに幸せなことはありません。現在私は医療機器開発を行う東大発ベンチャー、ナノティス株式会社の共同創業者として取締役CTOも務めていますが、ビジネスの戦略的なトップダウン思考と研究の理論的なボトムアップ思考は相乗効果を生むと信じています。なんとか両立できる道を模索し、自分の研究を追求していきたいと考えています。まだまだ未熟ですので、精進あるのみです。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

結果が出ない時期はしんどい時もありますが、何かを実現した時の感動はひとしお、それが研究です。「どんな小さな発見であれ、その発見の人類最初の観測者になれる」というのが研究者の醍醐味の1つのように感じます。(初めてアメーバのようなゾルゲル振動を観測したときは、ラボを走り回って喜んで、祝い酒をしたのを鮮明に覚えています笑)読者には研究者の先輩方も多くいらっしゃると思いますが、色んな方々の「最初の発見の感動」を伺わせてください!

最後に、今までご指導して下さった吉田先生、柴山先生、上木さん、玉手さんをはじめとする研究室内外の皆様、そしてこのように研究を紹介する機会を下さったケムステスタッフの皆様に深く御礼申し上げます。

 

研究者の略歴

名前:小野田実真(おのだみちか)

所属:東京大学大学院 工学系研究科 マテリアル工学専攻 吉田・秋元研究室

研究テーマ:ブロック共重合体の時空間構造化による新機能創製

略歴・職歴:

2014年3月 東京大学工学部卒業
2015年9月~ 東京大学大学院統合物質科学リーダー養成プログラム生 (MERIT)
2016年3月 東京大学大学院工学系研究科修了
2016年4月~ 東京大学大学院工学系研究科博士課程後期課程在学中
2016年4月~2017年3月 日本学術振興会特別研究員(DC1)
2017年4月~ ナノティス株式会社取締役CTO, Co-founder
2017年8月~ ミネソタ大学化学工学科 T. P. Lodge lab. Visiting Researcher

受賞など
東京大学総長賞、東京大学工学系研究科長賞、RSC Soft Matter Presentation Prize、ほか10件

めぐ

投稿者の記事一覧

博士(理学)。大学教員。娘の育児に奮闘しつつも、分子の世界に思いを馳せる日々。

関連記事

  1. 常温・常圧で二酸化炭素から多孔性材料をつくる
  2. Excelでできる材料開発のためのデータ解析[超入門]-統計の基…
  3. Discorhabdin B, H, K, およびaleutia…
  4. t-ブチルリチウムの発火事故で学生が死亡
  5. リンダウ会議に行ってきた②
  6. 第93回日本化学会付設展示会ケムステキャンペーン!Part II…
  7. アルキンから環状ポリマーをつくる
  8. 「糖化学ノックイン」の世界をマンガ化して頂きました!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 最長のヘリセンをつくった
  2. ペリプラノン
  3. 実践・化学英語リスニング(3)生化学編: 世界トップの化学者と競うために
  4. リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開発されている
  5. 学振申請書の書き方とコツ
  6. アスピリンの合成実験 〜はじめての化学合成〜
  7. 巧みに骨格構築!Daphgracilineの全合成
  8. 国際化学オリンピック2016でもメダルラッシュ!
  9. アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)
  10. ベンゼンの直接アルキル化

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP