[スポンサーリンク]

ケムステニュース

令和元年度 のPRTR データが公表~第一種指定化学物質の排出量・移動量の集計結果~

[スポンサーリンク]

経済産業省及び環境省は、「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」に基づき、事業者から届出のあった化学物質の令和元年度の排出量・移動量等のデータの集計を行い、今般、その結果を取りまとめました。届出のあった排出量は 140 千トン(対前年度比 5.7%の減少)、移動量は 244 千トン(対前年度比 0.7%の減少)となり、排出量と移動量の合計は 384 千トン(対前年度比 2.6%の減少)となりました。(経済産業省3月19日)

特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律、略称PRTR法(Pollutant Release and Transfer Register)は、環境中の化学物質のリスクを減らすことを目的に1999年に公布された法律で、事業者は第一種指定化学物質(特定化学物質:特化物とは異なります。)に指定された化学品の排出・移動量を国に届け出る必要があります。筆者も学生時代に実験の廃液タンクを引き取ってもらう際にPRTRに指定された薬品の排出量を登録した記憶があります。経済産業省及び環境省では、このように各事業者から申告された量を集計し毎年公表していて、令和元年度の集計結果が公表されました。

まず、令和元年度の排出量の内訳ですが、ほとんどが大気に放出されたことによる排出で、埋め立てや土壌、公共用域への排出は少量にとどまります。大気に放出される化学品のほとんどは揮発性の有機溶媒であり、化学品やプラスチック、ゴムなどの製造において使われた溶媒が揮発することで大気に放出したと報告されています。年間10万トンもの化学品が大気に放出されているとするとなかなかゾッとする話であり、低毒性の代替有機溶媒への切り替えがより一層進む必要があると感じさせる結果です。そのほかの排出経路として、公共用水域への排出では、ホウ素やフッ化水素とその水溶性塩、亜鉛、マンガンなどの化合物が川や海に排出されているようです。事業所内の土壌への排出ではほとんどがベンゼンで、事業所内の埋立処分では鉛、ヒ素、マンガンの化合物が埋め立てられているようです。

次に総移動量に移りますが、事業所外への廃棄物としての移動がほとんどで、下水道への移動が少量報告されています。事業所外への廃棄物としての移動というのは、産業廃棄物として処理業者に引き取ってもらった量を示しており、有機溶媒、重金属など様々な化学品が届けられています。下水道への移動では、水に溶ける有機・無機化合物が届けられています。

次に、届出排出量・移動量の推移を見ていきますが、年々減少しています。平成22年から届けが必要な業種と物質が変わりましたが、大気への排出量は平成13年と比べると半分になっていることが分かります。上記では、絶対量の多さに驚きましたが、経年変化を見れば、化学品を使う環境が変化していることが感じられます。

届出排出量・移動量の推移(引用:経済産業省プレスリリース

排出される化学品の推移を詳しく見るために、それぞれの項目の中で排出・移動が多い化学品ごとに推移を調べました。まず、大気への排出ですが、トルエン、キシレン、エチルベンゼン、塩化メチレンが多く大気に放出されています。トルエン、キシレン、塩化メチレンは、排出量が減少していますが、エチルベンゼンは、微増しています。キシレンとエチルベンゼンは、造船所や自動車製造工場が主の排出元であり、塗料を塗布、乾燥させる際に有機溶媒が揮発して大気に放出されていると考えられます。キシレンについては、代替が進んでいるもののエチルベンゼンは依然としてよく使われていることがこの結果につながっているのかもしれません。トルエンと塩化メチレンは、プラスチック製品や電気・金属機器製造業が主の排出元であり、洗浄用途で使用されていることが多いのかもしれません。塩化メチレンは、印刷所での健康被害の問題があったように、毒性が高くいろいろな法律の規制対象になっています。もちろん大気への排出量を0にすることは不可能ですが、より少なることが望まれます。

大気への排出された化学品の推移

次に公共用水域への排出ですが、ふっ化水素及びその水溶性塩が減少している以外は、大きな変動はありません。フッ化水素及びその水溶性塩を排出しているのは製鋼所が主であり、これは蛍石(フッ化カルシウム)が転炉や電炉の融剤として使用され、スラグの生成を促進する効果があるからです。ただし、蛍石を使うと製鋼スラグにふっ素が多く含まれてしまい、最終処分せざるを得ない製鋼スラグが生じます。そこで鉄鋼業では、蛍石ではなく、代替溶剤を利用したり、製鋼工程での温度を上昇させて蛍石使用削減に努力し、製鋼スラグ中のフッ素含有量の低減を図り、有効利用を進めてきました。このような理由から、排出されるフッ化水素及びその水溶性塩も減少している可能性があります。

公共用水域への排出された化学品の推移

事業所内の土壌への排出については、変動が少なかったので省略します。事業所内の埋立処分では、鉛、ヒ素、マンガンが多く埋め立てられていますが、どれも減少傾向にあります。どの元素も限られたいくつかの事業者が処理と埋め立ての最終処分を行っているようです。これらの化合物は焼却しても無害になるわけではないので、廃棄された化合物は、溶け出して土壌や地下水を汚染しないように処理をして埋め立てているようです。

事業所内の埋立処分された化学品の推移

次に事業所外への廃棄物としての移動された化合物ですが、マンガン、トルエン、クロムの順で移動量が多くなっています。マンガンやクロムは、製鋼所から多く移動されている一方、トルエンやDMFなどの有機溶媒は、化学工業、医薬品製造業から多く移動されています。溶媒として使用する場合には、閉鎖系で化合物が移動するため、大気への排出が起きにくいと考えられます。移動量が大きく減少した化学品は少なく、多くの化学品が増加か横ばいとなっています。他の排出・移動項目はなるべく少ない方が環境に良いものですが、この移動量に関しては、事業所内の回収率が上がれば、増加するものであり、減少していないからと言って環境への負荷が増加しているとは言えないと思います。

事業所外への廃棄物としての移動された化学品の推移

最後に下水道への移動ですがDMFの移動量が大幅に減少しています。移動元は、繊維、化学、プラスチック製造業であり、回収装置の普及により排出量が減少しているのかもしれません。

下水道への移動した化学品の推移

事業者は排出・移動量のみを報告するため、使用した化学品のどれくらいの割合が回収できずに、大気や土壌、河川、下水道に排出されてしまったのかは分かりません。また、申告は特定の規模と業種の事業者のみであり届け出外からも多く排出・移動している化合物もたくさんあります。行政ではPRTR 届出情報を元に、事業者近隣への健康被害のリスク評価を行っております。今はリスクが低いとされている化学品でも、長期的な暴露・摂取で未知の健康被害が発現する可能性やAIをはじめとする解析技術の発達により何らかの人体への影響と関連があるかもしれず、今後もなるべく多くのデータを蓄積する必要があるかと思います。いくつかの公害は、廃液を河川に流したことで起き、それを踏まえて環境を守るために化学品のいろいろな回収・無害化技術が開発されてきました。現在は、二酸化炭素の排出削減が大きく取り上げられていますが、それだけでなく有害な化学品の排出を最小限にすることも忘れてはいけないと思います。

関連書籍

関連リンク

Zeolinite

Zeolinite

投稿者の記事一覧

企業の研究員です。最近、合成の仕事が無くてストレスが溜まっています。

関連記事

  1. NHKアニメ『エレメントハンター』 2009年7月スタート!
  2. 電池長寿命化へ、充電するたびに自己修復する電極材
  3. 日本化学界の英文誌 科学分野 ウェッブ公開の世界最速実現
  4. トムソン・ロイター:2009年ノーベル賞の有力候補者を発表
  5. 京大融合研、産学連携で有機発光トランジスタを開発
  6. 第47回天然有機化合物討論会
  7. 新薬と併用、高い効果
  8. 「2010年トップ3を目指す」万有製薬平手社長

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ヘリウム不足いつまで続く?
  2. 学生・ポスドクの方、ちょっとアメリカ旅行しませんか?:SciFinder Future Leaders 2018
  3. “マイクロプラスチック”が海をただよう その2
  4. 2015年化学10大ニュース
  5. 2016年4月の注目化学書籍
  6. 有機合成者でもわかる結晶製品生産の最適化と晶析操作【終了】
  7. 原子のシート間にはたらく相互作用の観測に成功
  8. メーヤワイン・ポンドルフ・ヴァーレイ還元 Meerwein-Ponndorf-Verley (MPV) Reduction
  9. エリック・フェレイラ Eric M. Ferreira
  10. 製品開発職を検討する上でおさえたい3つのポイント

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-

青の食品着色料として広く使われる化学合成の「青色1号」とほぼ同じ色で、長期保存時の安定性に優れた天然…

砂塚 敏明 Toshiaki Sunazuka

砂塚 敏明 (すなづか としあき)は、日本の有機化学者である。学校法人北里研究所 理事、北里大学大村…

【ケムステSlackに訊いてみた】有機合成を学ぶオススメ参考書を教えて!

日本初のオープン化学コミュニティ・ケムステSlackを立ち上げてもうすぐ2年が経ちます。かな…

第三回ケムステVプレミアレクチャー「夢のある天然物創薬」を開催します!

そろそろケムステVシンポも開始しますが、その前にもう一度Vプレレクのお知らせです。3月末に第…

第8回慶應有機化学若手シンポジウム

ご案内有機合成・反応化学、天然物化学・ケミカルバイオロジー、生物 有機化学・医化学、有機材料化学…

第141回―「天然と人工の高分子を融合させる」Sébastien Perrier教授

第141回の海外化学者インタビューはセバスチャン・ペリエ教授です。シドニー大学化学科(訳注:現在はワ…

合格体験記:知的財産管理技能検定~berg編~

私(berg)が2019(令和元)年11月17日(日)に受験した3級(第34回)の記録です。現状とは…

Chem-Station Twitter

PAGE TOP