[スポンサーリンク]

ケムステニュース

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

[スポンサーリンク]

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルムアルデヒドなどの化学物質が含まれています。新たな研究によって、日々の通勤などで1日20分以上新車に乗り続けた場合、ベンゼンとホルムアルデヒドの摂取量がカリフォルニア州法に定められたしきい値を超えると判明しました。(引用:Gigazine2月17日)

車は大きな買い物であり、カーディーラーに何度も足を運んで購入を決め、納車日までウキウキしながら待ちます。そして納車から一定の期間は、車に乗り込むたびにこの独特の匂いを嗅いで購入した実感を嚙みしめることになります。この匂いの感じ方は人それぞれであり、吐き気などを感じて体調が悪くなる人もいればこの匂いを好む人もいて、新車の匂いを模した消臭スプレーなども販売されています。残念ながらこの新車の匂いの正体は複数の揮発性有機化合物(VOCs)であり人体への影響が懸念されています。車内のVOCの検出する研究は行われてきましたが、それがどの程度のリスクであるかはよく議論されてきておりませんでした。しかし最近になって人が車の中でどれくらいの量の化合物を取り込む可能性があるのかを調べた論文が発表されました。

では論文の要約に移りますが、統計的な調査によるとアメリカの成人は平均で6%の時間を通勤のため車内で過ごしており、一日の平均通勤時間としては52.8分であることが分かっています。一方、車内の環境を調べた先行研究では、フタル酸エステルや、VOCs、難燃剤が塵や空気から検出されていて、またそれらの濃度は建築物の中の濃度と比べると2から3倍高いことが分かっています。米国カリフォルニア州には、プロポジション65(Prop 65)という州法があり、リストに記載されている化学物質がある一定の濃度で含まれている場合には、製品に適切な警告文を表示することが求められています。本研究では、有害な化合物の滞在時間ごとの暴露推定値を導き出し、それをカリフォルニア環境健康被害評価局(OEHHA)によって定められたしきい値値と比較しどれくらいの癌のリスクがあるのかを調べました。

評価方法ですが、OEHHAの調査では乗用車とオフロード車から暴露される有害な化学物質としてベンゼン、一酸化炭素、ガソリンと軽油を使ったエンジンの排ガス、鉛、ホルムアルデヒド、フタル酸エステル類(DBP、DEHP、DIDP、DINP)が挙げられていますが、車の製造過程で発生する化学物質であるベンゼンとホルムアルデヒド、フタル酸エステル類(DBPとDEHP)を調査しました。加えて先行研究で車内から検出されたTDCIPPも調査の対象としました。実際に使用した測定データですが、これは過去に発表された28報の論文から車内の塵と空気に含まれる化合物の濃度に関するデータを引用しました。引用された文献の中には、日本の研究チームが日本車について調べた結果も含まれています。

検討対象となったDBP(左)、DEHP(中央)、TDCIPP(右)の構造式

まず、車内の滞在時間ごとに摂取、吸入する化合物の量を計算しました。方法は、集めたデータに対してアメリカ環境保護庁(EPA)が発行している暴露係数ハンドブック記載の係数をかけて車内の濃度から24時間の摂取量を計算し、それを経過時間で割った値です。OEHHAでは様々な動物実験の結果をもとに、NSRL (No Significant Risk Lebel、発がん性物質について重大なリスクのないレベル)MADL (Maximum Acceptable Dose Lebel、生殖毒性物質の最大許容用量レベル)を設定していますが今回調べた中ではベンゼンとホルムアルデヒドが厳しく、中央値以上では20分の滞在でしきい値を超えてしまうことが分かります。

一日の暴露量の比較、箱ひげ図の両端が最小、最大で長方形の両端が分布の25%と75%、長方形の中の縦線が中央値を示す。(引用:原著論文

OEHHAの各化学種に対するしきい値(引用:原著論文

20分ごとの暴露量の変化(引用:原著論文

次に上記の結果を使って種々の癌のリスクを計算しました。まず、化学種、統計量ごとにOEHHAのしきい値を超過する確率を求めました。上記の図で感覚的にわかるようにフタル酸エステル類とTDCIPPは、超過する確率が0に近いものの、ベンゼンとホルムアルデヒドは、20分でも100%を超過しています。

化学種、統計量、暴露時間ごとに基準を超える確率%RfDの分布、太線で区切られた分布は100%を超える。(引用:原著論文

そして基準を超過する確率が高かったベンゼンとホルムアルデヒドに対しては、超過する確率を滞在時間ごとに計算しました。滞在時間が100分を超えるまでにNSRLを超える確率が急激に高まっているように読み取れます。

暴露時間ごとの各%RfDになる確率(A:ベンゼンのNSRL基準 B:ホルムアルデヒドのNSRL基準 C:弁z年のMADL基準)と滞在時間ごとの100%RfDになる確率(引用:原著論文

最後に、カリフォルニアの群ごとに平均通勤時間を調べ、各基準を10%を超過する通勤者の割合を地図に示しました。サンフランシスコやロサンゼルス、サンディエゴといった都市の群ほど運転時間が長く超過する割合が高いようです。

カリフォルニアの群ごとの各基準を10%を超過する通勤者の割合(引用:原著論文

これらの検討に基づき車内では、ベンゼンとホルムアルデヒドの暴露量は短時間でも許容量を超えてしまうことが分かりました。車内の環境については考慮していませんが、革のシートよりも布素材のシートの方が芳香族化合物の濃度が低く、車内が広い車ほど濃度が高くなるという報告例があります。またこれらの有害な物質は、シートやプラスチック部品、カーペットから放出されており、購入からの経過年数以外にも、車内の温度や湿度、換気状況により濃度が変化することが分かっています。

この研究に関連して職業と癌のリスクを調べた研究では、タクシー運転手といった運転を職業とする人は、肺癌、膀胱癌、食道癌、胃癌、および直腸癌になるリスクが高く、特にベンゼンとホルムアルデヒドの曝露に起因する癌のリスクが高いことも示されています。自家用車による通勤を行っている人はそれ以外の通勤方法をとっている人よりも癌の発生率が高いという研究結果もありますが、車の運転時間によって癌になるリスクが変わるかどうかについてはより詳細な研究が必要とコメントしています。本研究の結論としては、車内でかなりの時間を過ごす人々のベンゼンとホルムアルデヒドの吸入に関連する潜在的なリスクを浮き彫りにしており、何らかの対策を実施する必要があるかも知れないとしています。

本研究はいろいろな論文の実測値を集め、カリフォルニアのしきい値を一つの物差しとして使い、様々な観点から暴露リスクを評価しています。集めたデータは、車種、走行距離、使用場所がバラバラであるため、より精度を上げるためには、ある程度条件をそろえたデータで解析する必要があると思われます。一方でいくつかの論文の車両条件を確認しましたが、化合物の濃度は走行距離や年数に思ったほど強い相関はないようでランダムな実地調査で、相関が高い因子を特定して化合物の濃度の精度を上げることは容易ではないと考えられます。また本文中でのコメントにもあるように、基準を超過することは明らかになりましたが、実際に乗車時間の差でどの程度癌に影響するかについては不明であり、この結果を受けて過度に乗車を控える必要はないと思います。ただし、人体に悪影響を及ぼす化学物質の濃度が他の環境よりも高いことは確かであり、これらを低減することは意味があると考えられます。ガソリン車が減って電気自動車や燃料電池車が増えても内装は変化しないと考えられ、VOCの発生を低減した内装向け素材の開発が期待されます。窓を開けることがユーザーができる低減策ですが、気候や治安によってはそれができないため、VOCを吸着できるフィルターや内張りなども開発されれば有効かもしれません。将来、新車の独特の匂いは、昔の車に装備されていた灰皿のように過去の車の象徴になるかもしれません。

関連書籍

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. ダイキン、特許を無償開放 代替フロンのエアコン冷媒
  2. ユネスコ女性科学賞:小林教授を表彰
  3. ノバルティス、米カイロンを5000億円で完全子会社に
  4. 積水化学、工業用接着剤で米最大手と提携
  5. 「原子」が見えた! なんと一眼レフで撮影に成功
  6. 有機化学美術館へようこそ ~分子の世界の造形とドラマ
  7. 氷河期に大量のメタン放出 十勝沖の海底研究で判明
  8. 様々な化学分野におけるAIの活用

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 模型でわかる【金属錯体型超分子】
  2. 2007年文化勲章・文化功労者決定
  3. 第39回ケムステVシンポ「AIが拓く材料開発の最前線」を開催します!
  4. アセトンを用いた芳香環のC–Hトリフルオロメチル化反応
  5. ダイセル化学、有機合成全製品を値上げ
  6. 諸熊 奎治 Keiji Morokuma
  7. 材料開発の未来とロードマップ -「人の付加価値を高めるインフォマティクスとロボティクス」-
  8. DNAナノ構造体が誘起・制御する液-液相分離
  9. 柴﨑正勝 Masakatsu Shibasaki
  10. “マイクロプラスチック”が海をただよう その2

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP