[スポンサーリンク]

一般的な話題

特許の基礎知識(3) 方法特許に注意! カリクレイン事件の紹介

[スポンサーリンク]

以前の記事で、発明には色々なものがあることを紹介しましたが、特許法では、発明を、大きくは以下の3種類に分類しています(特許法第2条)。

(1)「物」の発明:化合物、組成物(混合物)、フィルム/シート、装置、器具…など、物として存在するものに関する発明。

(2)「生産方法」の発明:ある物(原材料)に変化を加えて、別の物を生産する発明。

(3)「単なる方法」の発明:制御方法、測定方法など、方法を行うことで何かが製造されるわけではない発明。

ある発明コンセプトを思いついたとき、それを、物、生産方法、単なる方法のどれで表現するかは、任意です。物、生産方法、単なる方法のうち、2つ以上の表現ができる場合も多いです。特に、生産方法と単なる方法は、「方法」という括りでは同じですから、どちらでも表現できる場合が多いです。

例えば、医薬品の生産工程において、品質の確認のために、新たに発明した特殊な分析法Xを行う場合、

・特殊な分析法Xを行う工程を含む、医薬品の生産方法(生産方法)

・特殊な分析法X(単なる方法)

と、製造方法、単なる方法、どちらでも表現できます。

このように、生産方法でも単なる方法でも表現できる発明の場合、原則として生産方法で表現するほうがよい、というのが本記事で言いたいことです。

なぜ「生産方法」のほうがよいのか?

特許法の規定により、生産方法の特許権の効力は、その生産方法で得られたものにも及ぶ、とされているためです。

平たく言うと、生産方法の特許を持っていると、第三者がその生産方法で作った「製品」に対して、特許権を主張して、製品の製造販売の中止などを請求できるということです。

一方、単なる方法の特許の場合は、第三者に対しては「その方法を使うな」と言うことができるだけで、「製品」に対して権利を主張することはできません。

 

カリクレイン事件

生産方法と単なる方法の違いが問題となり、最高裁までもつれた事例として、「カリクレイン事件」という裁判例があります。

特許権者は、「被検物質のカリクレイン生成阻害能測定法」という特許を持っていました。

一方、特許権者とは異なる第三者は、医薬品の生産に際し、品質規格の検定のために上記測定法を使用していました。

 

特許権者は、第三者が製造した医薬品の製造販売の中止を求めました。

しかし、最高裁は、「方法の発明の特許権に基づき、その方法を使用して品質規格を検定した物の製造販売の差止め(中止)を請求することはできない。」という判決を出して、医薬品の製造販売の中止を認めませんでした。

判決には記載されていませんが、もし、特許が「被検物質のカリクレイン生成阻害能測定工程を含む、医薬品の製造方法」という権利だった場合には、医薬品の製造販売の中止が認められたはずです。

 

むすび

特許では、一見ちょっとした「書き方」「表現」の違いにより、結論が大きく変わってしまうことがあります。

カリクレイン事件では、発明を「生産方法」で表現していれば第三者の医薬品の製造販売を中止できたはずですが、「単なる方法」(測定法)で書いてしまったために、製造販売を中止できませんでした。

方法に関する発明の特許を出そうとする際には、このカリクレイン事件のことを思い出していただければ幸いです。

 

関連書籍

[amazonjs asin=”4627871511″ locale=”JP” title=”技術者のための特許実践講座 技術的範囲を最大化し,スムーズに特許を取得するテクニック”] [amazonjs asin=”4798056995″ locale=”JP” title=”技術者・研究者のための 特許の知識と実務第3版”]

 

関連リンク

カリクレイン事件 最高裁による判決文

 

Avatar photo

P.A.

投稿者の記事一覧

弁理士。都内特許事務所で化学・材料系メーカの特許出願等を担当。
特許という側面から日本の化学を盛り上げたいと考えています。

関連記事

  1. (-)-Calycanthine, (+)-Chimonanth…
  2. 反応機構を書いてみよう!~電子の矢印講座・その2~
  3. ChemDrawの使い方【作図編②:触媒サイクル】
  4. オープンアクセスジャーナルの光と影
  5. 日本語で得る学術情報 -CiNiiのご紹介-
  6. マテリアルズ・インフォマティクスのためのデータサイエンティスト入…
  7. B≡B Triple Bond
  8. 構造式を楽に描くコツ!? テクニック紹介

注目情報

ピックアップ記事

  1. ジョージ・スミス George P Smith
  2. 究極のエネルギーキャリアきたる?!
  3. シスプラチン しすぷらちん cisplatin
  4. 化学は地球を救う!
  5. 電池材料におけるマテリアルズ・インフォマティクスの活用
  6. オートファジーの化学的誘起で有害物質除去を行う新戦略「AUTAC」
  7. シリカゲル担持4-ヒドロキシ-TEMPOを用いたアルコール類の空気酸化反応
  8. ゲラニオール
  9. トップリス ツリー Topliss Tree
  10. 分子の対称性が高いってどういうこと ?【化学者だって数学するっつーの!: 対称操作】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP