[スポンサーリンク]

化学者のつぶやき

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

[スポンサーリンク]

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および可視光レドックス触媒を組み合わせることによって、温和な条件下でアルコールをアルキル化剤として用いるヘテロ芳香環のC-Hアルキル化を達成した。医薬品のLate-Stage官能基化にも適応可能である。

“Alcohols as alkylating agents in heteroarene C–H functionalization”
Jin, J.; MacMillan, D. W. C.* Nature 2015, 525, 87. doi:10.1038/nature14885

問題設定

メチル基を一つ導入するだけで薬物動態が大きく変化し得るように、ヘテロ芳香環へのアルキル基の直接導入法は重要である。しかし、従来法では等量の強力な酸化剤の利用、アルキルラジカル生成のための加熱、アトムエコノミーや環境調和性の低いアルキル化剤などが必要であり、複雑化合物のLate-Stage修飾法への展開も困難であった。

技術や手法のキモ

DNA生合成においては、酵素によってspin-center shift(SCS)[1]が起き、ラジカルβ位のC-O結合が切断され、脱水される。

冒頭論文より引用

この過程を念頭に置くと、アルコールから生じたアルキルラジカルがヘテロアレーンに付加したのちにSCSが起き、C-O結合が切断されればアルキル化が達成できると考えられる。可視光レドックス触媒を用いた穏和な条件の実現を目指し、以下の様な触媒サイクルを想定し反応開発を行っている。

冒頭論文より引用

鍵となるのは系中生成するチイルラジカルによるアルコールのC-H引き抜き過程と、プロトン化ヘテロ芳香環への炭素ラジカル付加、引き続くSCS過程による脱水である。
MacMillanらは同年、可視光レドックス触媒駆動型のMinisci反応を報告[2]しているが、今回の報告ではアルキルラジカルの付加後にSCSによってC-O結合が切断される点が異なっている。

主張の有効性検証

①SCS過程介在の検証

下記のラジカル捕捉実験から、光、光触媒、還元剤(Bu3N)、酸(HCO2HまたはTsOH)存在下にC-O結合が切断され、イソキノリンベンジル位炭素ラジカルが発生することが確認されている。

②反応機構に関する示唆
  • 光励起したIr(Ⅲ)はプロトン化ヘテロ芳香環によって消光される。一方でチオールや非プロトン化ヘテロアレーンによっては消光されない。このため酸化的消光過程を経ることが示唆される。
  • 酸化還元電位値から、Ir(IV)がチオール触媒を酸化する過程が合理化される(Ir(Ⅳ)はE1/2 = +1.21 V(vs SCE in MeCN)、チオールはE1/2 = +0.85 V(vs SCE in MeCN))。
  • メタノールのBDE(αC-H)=96 kcal/molであり、チオールはBDE(S-H)=85 kcal/molであるため強さとしては合理的ではないが、polarity effectで切断できると主張している。
  • 可視光レドックス触媒、チオール、光、酸のいずれが欠けても反応は進行しない。
③基質一般性の検討

メタノールは溶媒量必要だが、ほかのアルコール原料は10当量で反応が進行している。基質によっては別のチオールに変えるなどの工夫が必要なケースも。テトラヒドロフラン型エーテルの場合、第1級アルコールが共存してもエーテルα位C-Hが引き抜かれ、開環的に反応が進行する。医薬品のLate-Stageアルキル化へも応用可能。

議論すべき点

  • アルコールの使用を溶媒量や10当量から減じることができないか?より強力なHAT触媒を用いることによってこれは可能?

参考文献

  1. Wessig, P.; Muehling, O. Eur. J. Org. Chem. 2007, 2219. DOI: 10.1002/ejoc.200600915
  2. Jin, J.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2015, 54, 1565. DOI: 10.1002/anie.201410432
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 超大画面ディスプレイ(シプラ)実現へ
  2. 金属内包フラーレンを使った分子レーダーの創製
  3. 2017年ケムステ人気記事ランキング
  4. 超分子カプセル内包型発光性金属錯体の創製
  5. スケールアップで失敗しないために
  6. ガラス器具の洗浄にも働き方改革を!
  7. 連鎖と逐次重合が同時に起こる?
  8. グサリときた言葉

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ベンゼン環を壊す“アレノフィル”
  2. ゼムラー・ウォルフ反応 Semmeler-Wolff Reaction
  3. Goodenough教授の素晴らしすぎる研究人生
  4. 高分子材料における高次構造制御と機能発現【終了】
  5. 2013年ノーベル化学賞は誰の手に?トムソンロイター版
  6. 住友製薬-日本化薬、新規抗がん剤で販売提携
  7. 「機能性3Dソフトマテリアルの創出」ーライプニッツ研究所・Möller研より
  8. シュガーとアルカロイドの全合成研究
  9. ケムステタイムトラベル2011~忘れてはならない事~
  10. アセタール還元によるエーテル合成 Ether Synthesis by Reduction of Acetal

関連商品

注目情報

注目情報

最新記事

米国へ講演旅行へ行ってきました:Part IV

3部作で終わろうと思いながら、書くことが多すぎて終われませんでした。前回から2ヶ…

二水素錯体 Dihydrogen Complexes

水素分子がサイドオン型で金属中心に近づくと、二水素錯体を形成することができる。こうして形成した二水素…

分析化学科

お申込み・詳細はこちら◇分析化学科 (定員16名)本研修では「ものづくり企業」の品質管理等で…

多角的英語勉強法~オンライン英会話だけで満足していませんか~

国際学会で発表するにも、論文を書くにも、研究室の留学生と飲みにいくにも英語は必要です。しかし、それぞ…

ペプチドの革新的合成

第215回のスポットライトリサーチは、中部大学総合工学研究所分子性触媒センター助教・村松渉先生にお願…

年収で内定受諾を決定する際のポイントとは

転職活動の終盤で複数の企業から内定を獲得した際、「年収が決め手となって内定を受諾…

Chem-Station Twitter

PAGE TOP