[スポンサーリンク]

化学者のつぶやき

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

[スポンサーリンク]

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および可視光レドックス触媒を組み合わせることによって、温和な条件下でアルコールをアルキル化剤として用いるヘテロ芳香環のC-Hアルキル化を達成した。医薬品のLate-Stage官能基化にも適応可能である。

“Alcohols as alkylating agents in heteroarene C–H functionalization”
Jin, J.; MacMillan, D. W. C.* Nature 2015, 525, 87. doi:10.1038/nature14885

問題設定

メチル基を一つ導入するだけで薬物動態が大きく変化し得るように、ヘテロ芳香環へのアルキル基の直接導入法は重要である。しかし、従来法では等量の強力な酸化剤の利用、アルキルラジカル生成のための加熱、アトムエコノミーや環境調和性の低いアルキル化剤などが必要であり、複雑化合物のLate-Stage修飾法への展開も困難であった。

技術や手法のキモ

DNA生合成においては、酵素によってspin-center shift(SCS)[1]が起き、ラジカルβ位のC-O結合が切断され、脱水される。

冒頭論文より引用

この過程を念頭に置くと、アルコールから生じたアルキルラジカルがヘテロアレーンに付加したのちにSCSが起き、C-O結合が切断されればアルキル化が達成できると考えられる。可視光レドックス触媒を用いた穏和な条件の実現を目指し、以下の様な触媒サイクルを想定し反応開発を行っている。

冒頭論文より引用

鍵となるのは系中生成するチイルラジカルによるアルコールのC-H引き抜き過程と、プロトン化ヘテロ芳香環への炭素ラジカル付加、引き続くSCS過程による脱水である。
MacMillanらは同年、可視光レドックス触媒駆動型のMinisci反応を報告[2]しているが、今回の報告ではアルキルラジカルの付加後にSCSによってC-O結合が切断される点が異なっている。

主張の有効性検証

①SCS過程介在の検証

下記のラジカル捕捉実験から、光、光触媒、還元剤(Bu3N)、酸(HCO2HまたはTsOH)存在下にC-O結合が切断され、イソキノリンベンジル位炭素ラジカルが発生することが確認されている。

②反応機構に関する示唆
  • 光励起したIr(Ⅲ)はプロトン化ヘテロ芳香環によって消光される。一方でチオールや非プロトン化ヘテロアレーンによっては消光されない。このため酸化的消光過程を経ることが示唆される。
  • 酸化還元電位値から、Ir(IV)がチオール触媒を酸化する過程が合理化される(Ir(Ⅳ)はE1/2 = +1.21 V(vs SCE in MeCN)、チオールはE1/2 = +0.85 V(vs SCE in MeCN))。
  • メタノールのBDE(αC-H)=96 kcal/molであり、チオールはBDE(S-H)=85 kcal/molであるため強さとしては合理的ではないが、polarity effectで切断できると主張している。
  • 可視光レドックス触媒、チオール、光、酸のいずれが欠けても反応は進行しない。
③基質一般性の検討

メタノールは溶媒量必要だが、ほかのアルコール原料は10当量で反応が進行している。基質によっては別のチオールに変えるなどの工夫が必要なケースも。テトラヒドロフラン型エーテルの場合、第1級アルコールが共存してもエーテルα位C-Hが引き抜かれ、開環的に反応が進行する。医薬品のLate-Stageアルキル化へも応用可能。

議論すべき点

  • アルコールの使用を溶媒量や10当量から減じることができないか?より強力なHAT触媒を用いることによってこれは可能?

参考文献

  1. Wessig, P.; Muehling, O. Eur. J. Org. Chem. 2007, 2219. DOI: 10.1002/ejoc.200600915
  2. Jin, J.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2015, 54, 1565. DOI: 10.1002/anie.201410432
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 微生物の電気でリビングラジカル重合
  2. 結晶世界のウェイトリフティング
  3. 有機合成化学協会誌2020年1月号:ドルテグラビルナトリウム・次…
  4. 反応機構を書いてみよう!~電子の矢印講座・その2~
  5. 東レ先端材料シンポジウム2011に行ってきました
  6. Post-Itのはなし ~吸盤ではない 2~
  7. ケムステスタッフ Zoom 懇親会を開催しました【前編】
  8. 高分子討論会:ソーラーセイルIKAROS

注目情報

ピックアップ記事

  1. 話題のAlphaFold2を使ってみた
  2. Gilbert Stork最後の?論文
  3. ケムステ版・ノーベル化学賞候補者リスト【2020年版】
  4. ロジャー・チェン Roger Y. Tsien
  5. 芝浦工業大学 化学エネルギーのみで駆動するゲルポンプの機能を実証~医療デバイスやソフトロボット分野での応用期待~
  6. パラジウム触媒の力で二酸化炭素を固定する
  7. 【追悼企画】世のためになる有機合成化学ー松井正直教授
  8. 化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~
  9. MFCA -環境調和の指標、負のコストの見える化-
  10. Reaxysレクチャー&第9回平田メモリアルレクチャー

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年10月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP