[スポンサーリンク]

化学者のつぶやき

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

[スポンサーリンク]

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および可視光レドックス触媒を組み合わせることによって、温和な条件下でアルコールをアルキル化剤として用いるヘテロ芳香環のC-Hアルキル化を達成した。医薬品のLate-Stage官能基化にも適応可能である。

“Alcohols as alkylating agents in heteroarene C–H functionalization”
Jin, J.; MacMillan, D. W. C.* Nature 2015, 525, 87. doi:10.1038/nature14885

問題設定

メチル基を一つ導入するだけで薬物動態が大きく変化し得るように、ヘテロ芳香環へのアルキル基の直接導入法は重要である。しかし、従来法では等量の強力な酸化剤の利用、アルキルラジカル生成のための加熱、アトムエコノミーや環境調和性の低いアルキル化剤などが必要であり、複雑化合物のLate-Stage修飾法への展開も困難であった。

技術や手法のキモ

DNA生合成においては、酵素によってspin-center shift(SCS)[1]が起き、ラジカルβ位のC-O結合が切断され、脱水される。

冒頭論文より引用

この過程を念頭に置くと、アルコールから生じたアルキルラジカルがヘテロアレーンに付加したのちにSCSが起き、C-O結合が切断されればアルキル化が達成できると考えられる。可視光レドックス触媒を用いた穏和な条件の実現を目指し、以下の様な触媒サイクルを想定し反応開発を行っている。

冒頭論文より引用

鍵となるのは系中生成するチイルラジカルによるアルコールのC-H引き抜き過程と、プロトン化ヘテロ芳香環への炭素ラジカル付加、引き続くSCS過程による脱水である。
MacMillanらは同年、可視光レドックス触媒駆動型のMinisci反応を報告[2]しているが、今回の報告ではアルキルラジカルの付加後にSCSによってC-O結合が切断される点が異なっている。

主張の有効性検証

①SCS過程介在の検証

下記のラジカル捕捉実験から、光、光触媒、還元剤(Bu3N)、酸(HCO2HまたはTsOH)存在下にC-O結合が切断され、イソキノリンベンジル位炭素ラジカルが発生することが確認されている。

②反応機構に関する示唆
  • 光励起したIr(Ⅲ)はプロトン化ヘテロ芳香環によって消光される。一方でチオールや非プロトン化ヘテロアレーンによっては消光されない。このため酸化的消光過程を経ることが示唆される。
  • 酸化還元電位値から、Ir(IV)がチオール触媒を酸化する過程が合理化される(Ir(Ⅳ)はE1/2 = +1.21 V(vs SCE in MeCN)、チオールはE1/2 = +0.85 V(vs SCE in MeCN))。
  • メタノールのBDE(αC-H)=96 kcal/molであり、チオールはBDE(S-H)=85 kcal/molであるため強さとしては合理的ではないが、polarity effectで切断できると主張している。
  • 可視光レドックス触媒、チオール、光、酸のいずれが欠けても反応は進行しない。
③基質一般性の検討

メタノールは溶媒量必要だが、ほかのアルコール原料は10当量で反応が進行している。基質によっては別のチオールに変えるなどの工夫が必要なケースも。テトラヒドロフラン型エーテルの場合、第1級アルコールが共存してもエーテルα位C-Hが引き抜かれ、開環的に反応が進行する。医薬品のLate-Stageアルキル化へも応用可能。

議論すべき点

  • アルコールの使用を溶媒量や10当量から減じることができないか?より強力なHAT触媒を用いることによってこれは可能?

参考文献

  1. Wessig, P.; Muehling, O. Eur. J. Org. Chem. 2007, 2219. DOI: 10.1002/ejoc.200600915
  2. Jin, J.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2015, 54, 1565. DOI: 10.1002/anie.201410432
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. あなたの体の中の”毒ガス”
  2. ペーパーミル問題:科学界の真実とその影響
  3. 励起パラジウム触媒でケトンを還元!ケチルラジカルの新たな発生法と…
  4. チェーンウォーキングを活用し、ホウ素2つを離れた位置へ導入する!…
  5. 共有結合で標的タンパク質を高選択的に機能阻害する新しいドラッグデ…
  6. 構造式から選ぶ花粉症のOTC医薬品
  7. リアル『ドライ・ライト』? ナノチューブを用いた新しい蓄熱分子の…
  8. 世界初の有機蓄光

注目情報

ピックアップ記事

  1. 可視光レドックス触媒と有機蓄光の融合 〜大気安定かつ高性能な有機蓄光の実現〜
  2. ホフマン脱離 Hofmann Elimination
  3. ハートウィグ ヒドロアミノ化反応 Hartwig Hydroamination
  4. 歪んだアルキンへ付加反応の位置選択性を予測する
  5. 誤解してない? 電子の軌道は”軌道”ではない
  6. メーヤワイン・ポンドルフ・ヴァーレイ還元 Meerwein-Ponndorf-Verley (MPV) Reduction
  7. 第69回「見えないものを見えるようにする」野々山貴行准教授
  8. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使った設計編その2
  9. レビュー多くてもよくね?
  10. グラファイト、グラフェン、ナノグラフェンの構造と電子・磁気機能【終了】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年10月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP