[スポンサーリンク]

化学者のつぶやき

シクロペンタジエニル錯体の合成に一筋の光か?

[スポンサーリンク]

β-炭素脱離を用いるシクロペンタジエニル(Cp)錯体の新たな調製法が報告された。本法により反応系中で錯形成を行うことができ、Cp配位子と金属のスクリーニングが容易になると期待される。

 β–炭素脱離反応を用いる錯形成?

シクロペンタジエニル(Cp)配位子は金属の立体・電子的特性を多様に変化させることができるため、様々な遷移金属触媒反応に用いられている。

しかしCp配位子前駆体の不安定さから、錯体を合成する際に金属と配位子を前もって錯形成させる必要がある。したがって、Cp配位子のライブラリ構築が困難である。また、錯形成後は得られた錯体ごとに分離・精製操作を行い反応に用いる必要があるため、配位子–金属の迅速なスクリーニングも難しい。これらの障壁は、Cp配位子を用いた反応開発の足かせとなっている。

一方で、遷移金属触媒がもたらすC–C結合切断反応の1つにβ–炭素脱離反応がある(図1A)。

この反応は、弱い金属(M)–ヘテロ原子結合が強いM–炭素(C)結合へと組み換わる反応である。現在まで、t-プロパルギルアルコール(1)・t-ベンジルアルコール(2)、環歪みの大きいt-シクロブタノール(3)、π–アリル錯体が形成可能なt-ホモアリルアルコール(4)を基質としたβ–炭素脱離反応が報告されている(1)(図1B)。

今回、スイス連邦工科大学ローザンヌ校のCramer教授らはβ–炭素脱離反応における、C(sp3)への結合形成の駆動力としてシクロペンタジエニルアニオンと金属の強固な結合形成に注目し(図1C)、これを用いることでシクロペンタジエニル–金属錯体の新たな合成アプローチを確立した(図1D)。

Cp配位子前駆体と遷移金属を反応系中に加えるだけで錯形成が可能となるため、迅速なスクリーニングも可能になることが期待される。

図1. (A) β-炭素脱離反応 (B) 既知のβ–炭素脱離反応 (C) 今回の反応 (D) Cp–金属錯体のβ–炭素脱離による合成法

 

“A β-Carbon elimination strategy for convenient in situ access to cyclopentadienyl metal complexes”
Smits, G.; Audic, B.; Wodrich, M. D.; Corminboeuf, C.; Cramer, N. Chem. Sci. 2017, 8, 7174.
DOI: 10.1039/c7sc02986a

論文著者の紹介

研究者:Nicolai Cramer
研究者の経歴:
1998-2003 B.S. Diploma, University of Stuttgart, Germany
2003-2005 Ph.D., University of Stuttgart (Prof. Sabine Laschat)
2006-2007 Posdoc, Stanford University, USA (Prof. Barry M. Trost)
2010-2013 Assistant Professor, EPF Lausanne, Switzerland
2013-2015 Associate Professor, EPF Lausanne
2015- Full Professor, EPF Lausanne

研究内容:遷移金属触媒による不活性結合活性化および生理活性物質合成への応用

論文の概要

シクロペンタジエン10は配位子前駆体として有用であり、Diels–Alder反応により二量化を起こさず、また、金属がないと反応しない。

10はCp部位の置換基(R)やカルビノールの置換基(R1, R2)によらず、Rh錯体を作用させるとβ–炭素脱離反応が進行し、Cp錯体11を与えた(図2A)。置換基によっては塩基を用いず錯形成を行うことができ(本文参照)、複雑なキラル配位子10dにも本法は適用可能である。金属錯体はRhだけでなくIrやCoを用いることができ、金属の配位子は(cod)やOHでなくても錯形成が起こる (本文Table 3)。

また、反応系内で生成する水が反応を阻害する場合があり、モレキュラーシーブを添加することで収率が向上する。

さらに、DFT計算による反応解析はβ–炭素脱離における活性化障壁の低さを示し、本反応機構を支持している。

最後に、本法の特徴である系中での錯形成を用いて既存の触媒反応(2)を行い、良好な位置選択性・収率で生成物を得られることを実証した(図2B)。

以上、β–炭素脱離反応を用いた新たなシクロペンタジエニル–金属錯体の合成法が開発された。今後、この方法を用いて新反応が開発されることを期待したい。

図2. (A) 配位子前駆体10の基質適用範囲 (B)系中での錯形成の実例

 

参考文献

  1. (a) Murakami, M.; Matsuda, T. Commun. 2011, 47, 1100. DOI: 10.1039/c0cc02566f (b) Ruhland, K. Eur. J. Org. Chem. 2012, 2683. DOI: 10.1002/ejoc.201101616
  2. (a) Hyster, T. K.; Dalton, D. M.; Rovis, T. Sci. 2015, 6, 254. DOI: 10.1039/c4sc02590c (b) Wodrich, M. D.; Ye, B.; Gonthier, J. F.; Corminboeuf. C.; Cramer, N. Chem. Eur. J. 2014, 20, 15409. DOI: 10.1002/chem.201404515 (c) DeBoef, B; Pastine, S. J.; Sames, D. J. Am. Chem. Soc. 2004, 126, 6556. DOI: 10.1021/ja049111e
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. お望みの立体構造のジアミン、作ります。
  2. 『元素周期 ~萌えて覚える化学の基本~』がドラマCD化!!!
  3. 元素周期 萌えて覚える化学の基本
  4. 第95回日本化学会付設展示会ケムステキャンペーン!Part II…
  5. 有機合成化学協会誌2022年12月号:有機アジド・sp3変換・ヤ…
  6. フェノール類を選択的に加水素分解する新触媒を開発:リグニンから芳…
  7. アンモニアの安全性あれこれ
  8. 研究室クラウド設立のススメ(導入編)

注目情報

ピックアップ記事

  1. カフェインの覚醒効果を分子レベルで立証
  2. 理研の研究者が考える未来のバイオ技術とは?
  3. 宮田完ニ郎 Miyata Kanjiro
  4. 中国へ行ってきました 西安・上海・北京編③
  5. 付設展示会へ行こう!ーWiley編
  6. 稀少な金属種を使わない高効率金属錯体CO2還元光触媒
  7. 竹本 佳司 Yoshiji Takemoto
  8. 100兆分の1秒を観察 夢の光・XFEL施設公開
  9. 機能を持たせた紙製チップで化学テロに備える ―簡単な操作でサリンやVXを検知できる紙製デバイスの開発―
  10. 光刺激に応答して形状を変化させる高分子の合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年10月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP