[スポンサーリンク]

chemglossary

シュレンクフラスコ(Schlenk flask)

[スポンサーリンク]

微量の酸素や水などに対して不安定な化合物を取り扱うために使われるフラスコを指し、単にシュレンク、シュレンク管とも呼ばれている。

 

シュレンクフラスコとは

シュレンクフラスコは、ドイツの化学者ヴィルヘルム・ヨハン・シュレンク(Wilhelm Johann Schlenk)によって考案されたためシュレンクフラスコと呼ばれている。シュレンクが考案したのは独特の形状をしているシュレンクコックであり、狭義のシュレンクフラスコは、シュレンクコックが接続されているフラスコのみを指すと言える。

シュレンクコック付きのシュレンクフラスコ。三方コックなので一方は、コックからの延長線上に、もう一方はコックの取っ手の下にホースを接続できる。

ただしテフロンコックを接続したフラスコもシュレンクフラスコとして広く呼ばれていて、シュレンクコックと同様に空気に不安定な物質を使えるので広義にはシュレンクフラスコといえる。

テフロンコック付きのシュレンクフラスコ。黒い部分を回すと閉めたり開いたり取り外したりできる。緑色のラインの上の茶色いのがOリングで、ガラスと密着しているかどうか見える。

またフラスコ販売サイトによっては、通常の三方コックが接続したフラスコもシュレンクフラスコと謳って販売している場合があるが、シュレンクフラスコとは言えないと筆者は思う。

三方コックが接続されたフラスコの一例。

シュレンクコックの仕組み

通常のT字型三方コックでフラスコ内を窒素置換する場合、三方コックにポンプと窒素ガスラインを接続しパージと真空排気を交互に行うが、コック内T字の各流路から逸れたところは、ガスが滞留しやすい。もちろん、空間的にはつながっているが、窒素置換の効率を悪くしている。また、コックの方向を間違えると三方全てが接続してしまう。

三方コックの問題点(引用:スギヤマゲンシュレンクチューブ・テクニック

一方、シュレンクコックの場合には二つの独立した流路がコック内に設けられていて三方が接続することもないしガスが滞留するようなくぼみもない。そのため効率よくガス置換を行うことができる。

シュレンクコックのガスの流れ方(引用:スギヤマゲンシュレンクチューブ・テクニック

テフロンコックの仕組み

テフロンコックは、栓の先端がガラスのくぼんだ部分と密着することで閉まる。空いている状態でも、上部にある二つのOリングが内部の気密を保っているため外が空気が入り込んでくることはない。ガラスのコックとは異なり閉まっていてもコック内部に閉じ込められる部分がなくグリスもいらないので、液体が通ることにも多用されている。有名なテフロンコックはGPE Scientific社のJ.Youngコックで各フラスコメーカーはコック部分をメーカーから購入して自社のコックに接続して販売しているようである。栓の素材はテフロンだけでなくガラスもあり、Oリングもいくつかの種類があり、扱う化合物によって使い分ける必要がある。

テフロンコックの仕組み。フラスコの形は変わってもこのコックの構造は同じである。

 

長所と短所

シュレンクコックとテフロンコックの長所と短所をそれぞれ挙げる。

シュレンクコック

  1. 三方コックとして使えるので窒素置換だけであれば、別途真空ラインは必要ない。
  2. ガラス以外の素材を使っていないので溶媒で丸洗いできる。
  3. 栓側か管側が対になっていて破損したり紛失すると使えなくなる。(互換性があるシュレンクコックを作っているメーカーもある)
  4. コックが浮いて気密が破れることがある。
  5. コックにグリスをつけすぎると、流路がグリスで汚くなる。またカーブしているコックの流路は洗いにくい。

テフロンコック

  1. 別途窒素と真空のラインがないと空気の混入なしでの窒素置換はできない。
  2. 扱う化合物によっては、テフロンやOリングに影響が出て気密が保てなくなる
  3. 同じコックのメーカー、サイズであれば、どれでも同じである
  4. グリスフリーでOリングも二重になっているので長期において信頼性が高い
  5. ゴミや粒子が密着する部分に付着すると気密が保てなくなる。また、コックを閉めすぎるとガラスが破損する。

基本的には、空気に不安定な物質ということは危険性も高いわけであり、慎重な実験操作が必要であると言える。

価格

スギヤマゲンの製品で定価を比較すると

一口100 mlナスフラスコ15/25+三方コック 14,000円

シュレンク・100 mlナス型フラスコ シュレンクコックタイプ

20,000円

シュレンク・100 mlナス型フラスコ テフロンコックタイプ

32,000円

となりテフロンコックタイプは高価であることがわかる。これは他のサイズや形でも同じであり、テフロンコックのコストの関係で高価になっていると予測できる。どちらのタイプでもコックの部分が破損した場合には、コックごと取り替えて修理となる。

関連書籍

[amazonjs asin=”4254102542″ locale=”JP” title=”研究のためのセーフティサイエンスガイド―これだけは知っておこう”] [amazonjs asin=”4416518145″ locale=”JP” title=”ビーカーくんのゆかいな化学実験: その手順にはワケがある!”]

関連リンク

  • シュレンク管: wikipedia
  • シュレンクチューブ・テクニック:実験器具メーカーのスギヤマゲンが公開しているシュレンクフラスコの使い方指南書。細かく使い方を解説していて、空気に不安定な物質を取り扱う際には参考になる。グローブボックスを全く使わずにシュレンクフラスコだけで取り扱う方法を示している。スギヤマゲンでは多くの種類のシュレンクフラスコを販売していて、スギヤマゲンでのみ取り扱っている器具もある。もちろん、オーダーメイドにも対応している。
  • グローブボックスあるある:グローブボックスに関するあるあるをまとめた記事
  • Airfree Equipment:ChemGlassのシュレンク製品サイトAirfreeという商標でシュレンクフラスコなどを販売している。日本でも商社を通して輸入できる。輸入品は高いイメージだが、大きなサイズのガラス器具などは、日本のメーカーよりも安い場合がある。

 

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 動的コンビナトリアル化学 Dynamic Combinatori…
  2. 活性ベースタンパク質プロファイリング Activity-Base…
  3. メビウス芳香族性 Mobius aromacity
  4. 定量PCR(qPCR ; quantitative PCR)、リ…
  5. 常圧核還元(水添)触媒 Rh-Pt/(DMPSi-Al2O3)
  6. 全合成 total synthesis
  7. Undruggable Target と PROTAC
  8. MOF-74: ベンゼンが金属鎖を繋いで作るハニカム構造

注目情報

ピックアップ記事

  1. Igor Larrosa イゴール・ラロッサ
  2. 製薬会社5年後の行方
  3. 甲種危険物取扱者・合格体験記~cosine編
  4. 化学工場災害事例 ~爆発事故に学ぶ~
  5. デヴィッド・ミルステイン David Milstein
  6. SciFinder Future Leaders プログラム体験記 まとめ
  7. 生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素
  8. 英語で授業/発表するときのいろは【アメリカで Ph.D. をとる: TA 奮闘記 その 1】
  9. 水が決め手!構造が変わる超分子ケージ
  10. 水素化リチウムアルミニウム Lithium Alminum Hydride (LAH)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年3月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP