[スポンサーリンク]

スポットライトリサーチ

交互に配列制御された高分子合成法の開発と機能開拓

第156回のスポットライトリサーチは、京都大学大学院工学系研究科の亀谷優樹(かめたに ゆうき)さんにお願いしました!

亀谷さんの所属する大内研究室では、高分子化学のバックグラウンドと精密有機合成の考え方を融合させた「オンデマンド精密制御高分子合成」、すなわち、高分子合成を配列・立体規則性・形状の観点からも多重制御することで得られる新たな物質化学を探究しています。以前にも本コーナーでご紹介した研究成果も、その構想の一環です。今回の成果は、このコンセプトが物質機能に繋がりうることを示したものであり、Angew. Chem. Int. Ed.誌およびプレスリリースの形で公開されています。

”Control of the Alternating Sequence for N‐Isopropylacrylamide (NIPAM) and Methacrylic Acid Units in a Copolymer by Cyclopolymerization and Transformation of the Cyclopendant Group”
Yuki Kametani, Mitsuo Sawamoto, Makoto Ouchi, Angew. Chem. Int. Ed. 2018, 130,11071-11075. doi:10.1002/ange.201805049

亀谷さんを直接指導されている大内誠 教授からは、以下のコメントを頂いています。

「配列制御に基づく特性や機能を明らかにする」これは配列制御高分子を研究する研究者の間では大きな課題でした。そのためには,配列を制御した高分子の合成に加えて,様々な配列を有する高分子鎖の集まりで,全体の平均組成が同じ高分子を合成する必要があり,その両者で違いを調べる必要があります。亀谷君はモノマー反応性比を考慮した巧みな分子設計でAB交互配列ポリマーと1:1ランダム配列ポリマーを作り分け,刺激応答挙動に違いがあることを明らかにしました。一喜一憂しながら幾多のディスカッションを繰り返し,粘り強く実験と考察を繰り返した彼の努力は「あっぱれ」です。独特なキャラクターでこれからも亀ちゃんワールドを展開してくれることを願っております。

Q1. 今回プレスリリースの対象となったのはどんな研究ですか?簡単にご説明ください。

汎用の機能性モノマーユニットを交互に配列させた高分子の合成です。ビニルポリマーはラジカル重合で共重合することができますが,特殊な組み合わせを除いて配列を制御することは難しく,配列に由来するポリマーの特性を調べた例はほとんどありませんでした。本論文では新しく設計したジビニルモノマーを用いて,メタクリル酸(MAA)とN-イソプロピルアクリルアミド(NIPAM)を交互に並べたポリマーを合成しました。MAAとNIPAMそれぞれのポリマーはpHと温度に応答する汎用の機能性ポリマーです。この交互ポリマーの水溶液は広い温度範囲で徐々に濁るという,ホモポリマーや同じ組成のランダムコポリマーとは異なる温度応答性を示しました。また,pHを変えると透過率が変化する温度領域が変化しました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

交互ポリマーを合成するためのジビニルモノマーの分子設計です。図のように二種類のモノマーを活性化エステルと三級エステルでつないだジビニルモノマーを設計しました。このジビニルモノマーを希釈条件で重合すれば,分子内反応と,反応性と電子密度の差による選択的付加によって選択的な環化重合が進行し,交互配列が組み込まれた環化ポリマーが得られます。その後,活性化エステルと三級エステルを変換して目的の交互ポリマーとなります。今回の論文ではMAAとNIPAMへ変換しましたが,活性化エステルを変換する際に用いるアミン由来の構造をアクリルアミド側鎖に導入することができ,今後様々な交互配列ポリマーの合成が期待されます。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

意外に思われるかもしれませんが,比較用のランダムコポリマーの合成です。MAAの前駆体であるtBMAとNIPAMは反応性が異なるため,モノマーを1:1で仕込んで重合しても組成が1:1のポリマーは得られません。そこで,モノマー反応性比から組成が1:1となる仕込み比を求め,反応条件を最適化し,組成や分子量がほぼ同じで配列の異なるランダムコポリマーを合成しました。

Q4. 将来は化学とどう関わっていきたいですか?

今回の論文では今まで困難とされてきた機能性モノマーユニットの交互配列を実現し,合成高分子の機能について新たな可能性を示すことができました。今後も高分子を中心に化学の分野で課題を解決し,得られた成果がどこかで役に立ち,誰かを救うことに繋げられたら最高だと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

この研究に取り掛かったときは「交互ポリマーは均一性が高いから温度応答性はシャープになる」と予想していました。しかし実際は真逆の結果となりました。このように予想とは違うことが起こるから研究はおもしろいのだと思います。予想通りにうまくいかず苦しめられることも多いですが,それもひっくるめて研究を楽しみましょう!最後まで読んでくださりありがとうございました。

研究員の略歴

名前:亀谷 優樹 (かめたに ゆうき)

所属:京都大学大学院工学研究科高分子化学専攻 大内研究室

研究テーマ:高分子の配列制御

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. シリカゲルはメタノールに溶けるのか?
  2. 2007年ノーベル化学賞『固体表面上の化学反応の研究』
  3. 物凄く狭い場所での化学
  4. 日本薬学会第137年会  付設展示会ケムステキャンペーン
  5. 『Ph.D.』の起源をちょっと調べてみました① 概要編
  6. レビュー多くてもよくね?
  7. フローシステムでペプチド合成を超高速化・自動化
  8. 祝5周年!-Nature Chemistryの5年間-

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. カレーの成分、アルツハイマー病に効く可能性=米研究
  2. アーウィン・ローズ Irwin A. Rose
  3. ReadCubeを使い倒す!(2)~新着論文チェックにもReadCubeをフル活用!~
  4. 根岸クロスカップリング Negishi Cross Coupling
  5. ビタミンと金属錯体から合成した人工の酵素
  6. ケムステイブニングミキサー2018へ参加しよう!
  7. 黒田 一幸 Kazuyuki Kuroda
  8. 112番元素にコペルニクスに因んだ名前を提案
  9. 多核テルビウムクラスターにおけるエネルギー移動機構の解明
  10. 光触媒で抗菌・消臭 医療用制服、商品化へ 豊田通商 万博採用を機に

関連商品

注目情報

注目情報

最新記事

フラーレンの“籠”でH2O2を運ぶ

過酸化水素分子内包フラーレン誘導体を、大気圧・室温条件下で合成する方法が開発された。分子内包フラ…

北エステル化反応 Kita Esterification

概要ルテニウム触媒存在下、エチニルエチルエーテル試薬を脱水剤として用い、カルボン酸とアルコールか…

一人二役のフタルイミドが位置までも制御する

N-ヒドロキシフタルイミドを用いる逆マルコフニコフ型のヒドロアミノ化が報告された。遷移金属触媒および…

ジアゾニウム塩が開始剤と捕捉剤を“兼務”する

アリールジアゾニウム塩を用いたプレニルカルバマート/ウレアのシクロアミノジアゾ化反応が開発された。入…

パラジウム光触媒が促進するHAT過程:アルコールの脱水素反応への展開

2016年、イリノイ大学シカゴ校・Vladimir Gevorgyanらは、Pd(0)触媒の共存下、…

ウラジミール・ゲヴォルギャン Vladimir Gevorgyan

ウラジミール・ゲヴォルギャン(Vladimir Gevorgyan、1956年8月12日-)は、アメ…

PAGE TOP