[スポンサーリンク]

archives

pre-MIBSK ~Dess-Martin試薬と比べ低コスト・安全なアルコール酸化触媒~

 

pre-MIBSKは、名古屋大学の石原らが開発した超原子価ヨウ素を有するアルコール酸化触媒です。Dess-Martin試薬に比べ、使用量が触媒量でよく活性種が系中で発生するため、低コストかつ安全に扱うことが可能です。さらに第2級アルコールの酸化も進行することに加え、第一級アルコールの酸化に関しては共酸化剤のOxone®の量を調節することでアルデヒドとカルボン酸の作り分けも可能です。
〈参考文献〉

[1] “2-Iodoxybenzenesulfonic Acid as an Extremely Active Catalyst for the Selective Oxidation of Alcohols to Aldehydes, Ketones, Carboxylic Acids, and Enones with Oxone”

Uyanik, M., Akakura, M., Ishihara, K. : J. Am. Chem. Soc., 2009,  131, 251. DOI: 10.1021/ja807110n

ja-2008-07110n_0035

Electron-donating group-substituted 2-iodoxybenzoic acids (IBXs) such as 5-Me-IBX (1g), 5-MeO-IBX (1h), and 4,5-Me2-IBX (1i) were superior to IBX 1a as catalysts for the oxidation of alcohols with Oxone (a trademark of DuPont) under nonaqueous conditions, although Oxone was almost insoluble in most organic solvents. The catalytic oxidation proceeded more rapidly and cleanly in nitromethane. Furthermore, 2-iodoxybenzenesulfonic acid (IBS, 6a) was much more active than modified IBXs. Thus, we established a highly efficient and selective method for the oxidation of primary and secondary alcohols to carbonyl compounds such as aldehydes, carboxylic acids, and ketones with Oxone in nonaqueous nitromethane, acetonitrile, or ethyl acetate in the presence of 0.05−5 mol % of 6a, which was generated in situ from 2-iodobenzenesulfonic acid (7a) or its sodium salt. Cycloalkanones could be further oxidized to α,β-cycloalkenones or lactones by controlling the amounts of Oxone under the same conditions as above. When Oxone was used under nonaqueous conditions, Oxone wastes could be removed by simple filtration. Based on theoretical calculations, we considered that the relatively ionic character of the intramolecular hypervalent iodine−OSO2 bond of IBS might lower the twisting barrier of the alkoxyperiodinane intermediate 16.

[2] “2-Iodoxy-5-Methylbenzenesulfonic Acid-Catalyzed Selective Oxidation of 4-Bromobenzyl Alcohol to 4-Bromobenzaldehyde or 4-Bromobenzoic Acid with Oxone”

Uyanik, M., Ishihara, K. Org. Synth. 2012, 89, 105. DOI:10.15227/orgsyn.089.0105

v89p0105-1

〈製品ページ〉

pre-MIBSK

関連記事

  1. ノーベル化学賞への道公開
  2. 統合失調症治療の新しいターゲット分子候補−HDAC2
  3. 1,4-ジ(2-チエニル)-1,4-ブタンジオン:1,4-Di(…
  4. ネオジム磁石の調達、製造技術とビジネス戦略【終了】
  5. ラボからのスケールアップ再現性手法【終了】
  6. カルベン触媒によるα-ハロ-α,β-不飽和アルデヒドのエステル化…
  7. 有機・高分子合成における脱”レアメタル”…
  8. Horner-Emmons 試薬

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. トイレから学ぶ超撥水と超親水
  2. 分子モーター / Molecular Motor
  3. Molecules That Changed the World
  4. リケジョ注目!ロレアル-ユネスコ女性科学者日本奨励賞-2013
  5. 2013年就活体験記(1)
  6. 「触媒的オリゴマー化」によるポリピロロインドリン類の全合成
  7. 環サイズを選択できるジアミノ化
  8. 緑茶成分テアニンに抗ストレス作用、太陽化学、名大が確認
  9. 北原武 Takeshi Kitahara
  10. 第6回HOPEミーティングに参加してきました:ノーベル賞受賞者と夢語り合い

関連商品

注目情報

注目情報

最新記事

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明

第161回目のスポットライトリサーチは、早田敦 (はやた あつし)さんにお願いしました。早田…

イグノーベル化学賞2018「汚れ洗浄剤としてヒトの唾液はどれほど有効か?」

Tshozoです。今年もIg Nobel賞、発表されましたね。色々と興味深い発表が続く中、NHKで放…

最近のwebから〜固体の水素水?・化合物名の商標登録〜

皆様夏休みはいかがお過ごしでしたでしょうか。大学はそろそろ後学期が始まってきたところです。小…

PAGE TOP