[スポンサーリンク]

化学者のつぶやき

環状アミンを切ってフッ素をいれる

[スポンサーリンク]

環状アミンの開裂をともなうフッ素化が報告された。医農薬分子に頻出であるフッ素原子を導入するための新たな手法として注目される。

環状アミンの開裂をともなうフッ素化反応

分子の官能基化を行う方法の一つに、既存の結合切断を起点とした官能基化がある。すなわち、分子がもつもともとの結合を切り、官能基化に必要な新たな結合に組み替えるといった手法である。この手法を環状アミンに適用した例として、Ferroudらと樋口らは独立に、アミンα位の酸化によるC–N結合切断をともなうC–O結合形成反応を報告している[1](1A)。また窒素原子上がアルキル化された環状アミンの開環をともなう塩素化も知られているが[2]、小員環に限定される(1B)

一方、医農薬に頻出であるフッ素原子をsp3炭素に導入する手法の開発も求められている。Mn触媒を用いたsp3炭素フッ素化反応が報告されているが[3](1C)、未だにカルボニルa位やアリル・ベンジル位といった高反応性部位のフッ素化反応が主であり、さらなる方法論の拡大が必要である。

これらを背景として、著者であるカリフォルニア大学バークレー校のSarpongらは環状アミンのC(sp3)–C(sp3)結合切断をともなうフッ素化反応を開発した(1D)。アミンα位の酸化によるヘミアミナール形成、続く開環で生成する一級ラジカルのフッ素化により反応が進行する。小員環のみならず中員環に対しても適用可能であり、含フッ素ペプチド合成への応用も期待される。

図1.(A) C–N結合切断をともなうC–O結合形成 (B) 環状アミンの開環的塩素化 (C) Mn触媒を用いたsp3炭素のフッ素化 (D)本論文の反応

“Deconstructive fluorination of cyclic amines by carbon-carbon cleavage”

Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Science 2018, 361, 171. DOI: 10.1126/science.aat6365

論文著者の紹介

研究者:Richmond Sarpong 

研究者の経歴:

1991-1995 B.S., Macalester College, St. Paul, MN (Prof. Rebecca C. Hoye)
1995-1997 M.S., Princeton University, Princeton, NJ
1997-2001 Ph.D., Princeton University, Princeton, NJ (Prof. Martin F. Semmelhack)
2001-2004 Posdoc, Califonlnia Institute of Technology, Pasadena, CA (Prof. Brian M. Stoltz)
2004-2010 Assistant Professor, University of California, Barkeley
2010-2014 Associate Professor, University of California, Barkeley
2014- Full Professor, University of California, Barkeley

研究内容:天然物の全合成と新規反応開発・ケミカルバイオロジー

論文の概要

本フッ素化反応は銀塩(酸化剤)に過剰量のAgBF4、フッ素化剤にSelectfluorを用いることで効率よく進行する。基質適用範囲は広く、大小さまざまな環状アミン1a,b、さらに置換基をもつ環状アミン1c,dや縮環した二環式環状アミン1eにおいても反応が進行する。一部の基質1f,gにおいて中間体のヘミアミナールが過剰酸化されることでラクタムが生じる(2A)

NMRによる反応追跡や種々の基質を使った対照実験の結果、図2Bに示すような反応機構が提唱された。まず、銀(I)Selectfluorにより生じた銀(II)とラジカルジカチオンAが基質1jと反応しイミニウムイオンBが生じ、続いてBに水が付加することでヘミアミナールCを与える。その後、生じたヘミアミナールCがアルコキシラジカル中間体を経たのち、ラジカル的開環により中間体Dとなる。その後DSelectfluorによりフッ素化され生成物2jとなる(path A)。別の経路として、ヘミアミナールCの開環体が酸化されカルボン酸Eとなったのち、脱炭酸的フッ素化[4]を起こし生成物2j’を与える経路も提唱された(path B)。そのため、図2A1hのようなカルボキシ基をもつ基質ではジフッ素化がおこる。なお、path Apath Bの両機構を支持する実験結果が得られている(論文参照)

以上、環状アミンの開裂的フッ素化が報告された。方法論として環状アミン開裂体をラジカル等価体としてみなす発想もさることながら、医農薬に有用である含フッ素化合物の新たな合成法としても興味深い。

図2. (A) 基質適用範囲 (B) 推定反応機構

 参考文献

  1. (a) Cocquet, G.; Ferroud, C.; Guy, A. Tetrahedron,2000, 56, DOI: 10.1016/S0040-4020(00)00048-X(b) Ito, R.; Umezawa, N.; Higuchi, T. J. Am. Chem. Soc. 2005, 127, 834. DOI: 10.1021/ja045603f
  2. Yu, C.; Shoaib, M. A.; Iqbal, N.; Kim, J. S.; Ha, H.-J.; Cho, E. J. J. Org. Chem.2017, 82, 6615. DOI: 10.1021/acs.joc.7b00681
  3. Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard III, W. A.; c J. T. Science2012, 337, 1322. DOI: 1126/science.1222327
  4. Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 10401. DOI: 10.1021/ja3048255
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 計算化学:DFT計算って何?Part II
  2. 環歪みを細胞取り込みに活かす
  3. 東京理科大学みらい研究室にお邪魔してきました
  4. 炭素をBNに置き換えると…
  5. Dead Endを回避せよ!「全合成・極限からの一手」⑨ (解答…
  6. あなたの分子を特別なカタチに―「CrystalProtein.c…
  7. 未来切り拓くゼロ次元物質量子ドット
  8. 有機反応を俯瞰する ーリンの化学 その 1 (Wittig 型シ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. あなたの分子を特別なカタチに―「CrystalProtein.com」
  2. 化学研究ライフハック: Firefoxアドオンで化学検索をよりスピーディに!
  3. 世界初!うつ病が客観的に診断可能に!?
  4. 水入りフラーレンの合成
  5. Essential細胞生物学
  6. サリドマイドの治験、22医療機関で 製薬会社が発表
  7. 新たな特殊ペプチド合成を切り拓く「コドンボックスの人工分割」
  8. 生体組織を人工ラベル化する「AGOX Chemistry」
  9. アメリカ大学院留学:研究室選びの流れ
  10. ご注文は海外大学院ですか?〜選考編〜

関連商品

注目情報

注目情報

最新記事

強塩基条件下でビニルカチオン形成により5員環をつくる

LiHMDSと弱配位性アニオン塩触媒を用いた分子内C–H挿入反応が開発された。系内で調製したリチウム…

韓国へ輸出される半導体材料とその優遇除外措置について

経済産業省は1日、日韓の信頼関係が著しく損なわれたと判断し、韓国向けの輸出管理を強化すると発表した。…

Mestre NovaでNMRを解析してみよう

日本ではJEOLのマシンが普及していることもあり、DeltaでNMRの解析をしている人が多いとは思い…

奈良坂・プラサード還元 Narasaka-Prasad Reduction

概要βヒドロキシケトンを立体選択的に還元し、syn-1,3-ジオールを与える方法。anti-1,…

CASがSciFinder-nの画期的逆合成プランナーの発表で研究・開発の生産性向上を促進

CAS launched a computer-aided retrosynthetic analy…

CRISPR(クリスパー)

CRISPRは、clustered regularly interspaced short pali…

Chem-Station Twitter

PAGE TOP