[スポンサーリンク]

化学者のつぶやき

Mgが実現する:芳香族アミンを使った鈴木―宮浦カップリング

ニッケル触媒による芳香族アミンとボロン酸エステルとの鈴木―宮浦型カップリングが開発された。2価のニッケル種の還元と触媒サイクルの促進という2つの役割をマグネシウムが担っている。

アリールC-N結合切断を伴うカップリング

 芳香族アミン(N,Nジアルキルアリールアミン)は医薬品および天然に広く存在する骨格であり、その構築法はUllmann縮合Buchwald–Hartwigクロスカップリングを始めとして、これまで盛んに研究されている。一方で、熱力学的および速度論的安定性をもつ不活性なアリールC–N結合の活性化は一般的に困難であり、遷移金属触媒によるカップリングの報告例は少ない。先駆的な例として、1988年にWenkertらがニッケル触媒条件下、アリールトリメチルアンモニウム塩とGrignard試薬とのカップリング反応を報告している(1A)[1]。これを皮切りに、有機金属反応剤を用いた遷移金属触媒によるC–N結合活性化が注目されるようになった。2003年にはMacMillanらが、芳香族ボロン酸とアリールアンモニウム塩を用いた鈴木―宮浦型カップリングを開発した(1B)[2]。しかしアンモニウム塩を求電子剤として用いるこれらの手法は、ジメチルアリールアミンを活性なアンモニウム塩へ変換する工程が必要となる。2007年に垣内らはルテニウム触媒存在下、o位に配向基をもつアニリン誘導体と芳香族ボロン酸エステルとの鈴木―宮浦型カップリングの開発に成功した(1C)[3]。事前の求電子剤活性化を必要とせず、様々な芳香族アミンを用いることができるが、配向基が残存してしまうという課題が残る。

 今回、Shi教授らはニッケル触媒存在下、マグネシウムを添加することで、N,Nジメチルアリールアミンを求電子剤とした直接的な鈴木―宮浦型カップリングに初めて成功したので紹介する(1D)

図1.アリールC-N結合の還元的カップリング

 

Ni-Catalyzed Cross-Coupling of Dimethyl Aryl Amines with Arylboronic Esters under Reductive Conditions

Cao, Z. C.; Xie, S. J.; Fang, H.; Shi, Z. J. J. Am. Chem. Soc.2018, 140, 13575-13579.

DOI: 10.1021/jacs.8b08779

論文著者の紹介

研究者:Zhang-Jie Shi

研究者の経歴:
1992-1996 BSc, Department of Chemistry, East China Normal University
1996-2001 PhD, Shanghai Institute of Organic Chemistry, CAS (Prof. Shengming Ma)
2001-2002 Postdoc Fellow, Harvard University (Prof. Gregory L Verdine)
2002-2004 Research Associate, The University of Chicago (Prof Chuan He)
2004-2008 Associate Professor, College of Chemistry and Molecular Engineering, Peking University
2008-2017 Professor, College of Chemistry and Molecular Engineering, Peking University
2017- Professor, Department of Chemistry, Fudan University

研究内容:遷移金属触媒を用いた反応開発

論文の概要

 本反応はNi/IMesMe触媒存在下、添加剤としてMgを用い、N,Nジメチルアリールアミン1とアリールボロン酸ネオペンチルグリコール2とのカップリング反応によりビアリール体3を高収率で与える。1に種々のアルキル置換基やエーテル、ケタールなどの官能基、さらにはアルキルボロン酸エステルが内在していても反応は進行する(2A)。また2はアルキル基だけでなくアリール基、シリル基の共存も可能である。

 EPR解析およびDFT計算の結果から、系中で(IMesMe)2Ni(I)Brが生成していることが確認され、Ni(I)/Ni(III)の触媒サイクルが示唆された。そこで著者らはマグネシウムの効果を調査するために対照実験を行った(2B)。もし本反応においてマグネシウムが還元剤としての役割のみをもつならば、(IMesMe)2Ni(I)Brを触媒として直接添加しても同様の結果が得られるはずである。しかし予想に反し、Mg非存在下では3の収率が大幅に低下したが、Mgが添加されている場合、最適条件と同等の収率で3を与えた。つまりMgは還元剤としての働きに加え、本反応を促進する役割も担っていることが示唆される。本反応機構は次のように提唱されている(2C)。まず、Mgにより、Ni(II)Ni(I)へ還元され活性種が生成する。続いて、配位子交換によりが得られた後、酸化的付加によって3価のニッケル種が生成する。2とのトランスメタル化を経て、が還元的脱離を起こすことで3を与え、また活性種が再生し触媒サイクルが完結する。

図2. (A)基質適用範囲、(B)対照実験、(C)推定反応機構

 

以上、N,Nジメチルアリールアミンを求電子剤とした直接的鈴木―宮浦型カップリングが開発された。詳細な機構は不明であるが、芳香族アミンをそのままカップリング剤として用いることができるようになったことは興味深い。

参考文献

  1. Wenkert, A.-L. Han and C.-J. Jenny, J. Chem. Soc., Chem. Commun., 1988, 0, 975. DOI: 10.1039/C39880000975
  2. Blakey, S. B.; MacMillan, D. W. J. Am. Chem. Soc.2003, 125, 6046. DOI: 10.1021/ja034908b
  3. [a]Ueno, S.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc.2007, 129, 6098. DOI: 10.1021/ja0713431[b] Koreeda, T.; Kochi, T.; Kakiuchi, F. J. Am. Chem. Soc.2009,131, 7238. DOI: 10.1021/ja902829p
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。
山口 研究室

最新記事 by 山口 研究室 (全て見る)

関連記事

  1. 含ケイ素四員環 -その1-
  2. Dead Endを回避せよ!「全合成・極限からの一手」③
  3. 死刑囚によるVXガスに関する論文が掲載される
  4. 近況報告Part V
  5. BASFクリエータースペース:議論とチャレンジ
  6. 標準物質ーChemical Times特集より
  7. 中学入試における化学を調べてみた
  8. 軽量・透明・断熱!エアロゲル(aerogel)を身近に

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ヘリウム不足再び?
  2. ノーベル賞化学者と語り合おう!「リンダウ・ノーベル賞受賞者会議」募集開始
  3. 米社が液晶パネルのバックライトにカーボン・ナノチューブを採用
  4. ペリ環状反応―第三の有機反応機構
  5. アノマー効果を説明できますか?
  6. アビー・ドイル Abigail G. Doyle
  7. 今年も出ます!サイエンスアゴラ2014
  8. ストックホルム市庁舎
  9. IBM,high-k絶縁膜用ハフニウムの特性解析にスパコン「Blue Gene」を活用
  10. 3Mとはどんな会社?

関連商品

注目情報

注目情報

最新記事

電池長寿命化へ、充電するたびに自己修復する電極材

東京大学大学院工学系研究科の山田淳夫教授らは、充電するたびに自己修復を繰り返し、電池性能の劣化を防ぐ…

(−)-Salinosporamide Aの全合成

(−)-salinosporamide Aの立体選択的全合成が達成された。アザ-ペイン転位/ヒドロア…

クラウド版オフィススイートを使ってみよう

クラウド版オフィススイートとはOffice onlineやGoogle ドライブなどのことで、ソフト…

NHCが触媒する不斉ヒドロフッ素化

キラルなN–ヘテロ環状カルベン(NHC)を触媒として用いたα,β-不飽和アルデヒドに対する不斉ヒドロ…

ケミカルバイオロジーとバイオケミストリー

突然ですが、質問です。有機化学と無機化学。違いは説明できますか?「生体物質をあつかうものが有…

改正特許法が国会で成立

特許を侵害したと疑われる企業に専門家が立ち入り検査する制度を新設する改正特許法が10日午前の参院本会…

Chem-Station Twitter

PAGE TOP